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Abstract
Machine learning (ML) is one of the key technologies

that can considerably extend and advance the capabilities
of particle accelerators and needs to be included in their fu-
ture design. Future light sources aim to reach unprecedented
beam brightness and radiation coherence, which require chal-
lenging beam sizes and accelerating gradients. The sensitive
designs and complex operation modes that arise from such
demands will impact the beam availability and flexibility for
the users, and can render future accelerators inefficient. ML
brings a paradigm shift that can re-define how accelerators
are operated. In this contribution we introduce the vision of
ML-driven facilities for future accelerators, address some
challenges of future light sources, and show an example of
how such methods can be used to control beam instabilities.

INTRODUCTION
Frontier Accelerators

Both the photon science and high energy physics research
communities generally aim at increasing the performance of
accelerators, reduce their cost, and make them more power
efficient. These goals are even more relevant for frontier
particle accelerators, driven by ambitious research programs
that require demanding beam parameters, often outpacing
the progress of traditional accelerator technologies [1–3].
The current cost of frontier accelerators is estimated at more
than 1 billion dollars, where larger facilities can cost up to 10
times more [4]. This cost is directly related to the technology
these accelerators are based on, and can be reduced with
advancements in such technology. Given the size, cost, and
technological advancements required, frontier accelerators
are one of the most challenging scientific endeavors.

The Potential of Machine Learning for Particle
Accelerators

The potential of ML methods in accelerators was already
identified back in 2018 [5], and their popularity has been
rapidly increasing since then, as shown in Fig. 1.

This is due not only to the general rise in popularity of
artificial intelligence (AI), but thanks to the continuous de-
velopment of easily accessible ML software libraries and
recent advances of ML methods, applied to a variety of fields.
While interesting improvements have already been observed
in existing accelerator facilities, particularly in tuning and
optimization tasks [6, 7], a promising avenue for ML meth-
ods in accelerators is their potential to help overcome the
challenges of frontier accelerators [8], which could become
a liability in their development if unaddressed (e.g., techni-
cal impossibilities, insufficient beam availability, inefficient
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Figure 1: Number of publications with the words ”machine
learning” or ”artificial intelligence” in the abstract, scraped
from the JACoW database.

design). Some of the challenges that can be approached
with ML are listed in Fig. 2, for different frontier accelerator
design trends.

Figure 2: Some trends and related challenges of frontier
accelerators.

ML methods can yield fast predictions at a reduced com-
putational cost compared to analytical or classical numerical
methods, can take into account the non-linear correlations
in the data, and can adapt the predictions to the drifts in
the machine state. These capabilities are highly desirable in
accelerators since they open the door to a very robust and tai-
lored online detection, prediction, optimization, and control.
They can also help design future accelerators by alleviating
the computational cost of numerical simulations and guid-
ing the search for optimal parameters in a high-dimensional
parameter space. Table 1 summarizes some applications of
ML in current accelerators, split by the type of task. There
are also numerous applications in particle physics that are
not covered in this publication [9, 10].

Looking ahead into the future we can imagine a com-
pletely autonomous accelerator [11] where the operation is
user-centric and guided by the changing demands of more
complex and maybe ML-driven experiments. Such an ac-
celerator would be energy responsible, with an automated
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Table 1: Machine learning opportunities in particle accelerators (online and in simulation)

Task Goal Methods/Concepts Examples1

Detection Detect outliers and anomalies • Anomaly detection • Collimator alignment
in accelerator signals for interlock • Time series forecasting • Optics corrections
prediction, data cleaning • Clustering • SRF quench detection

Prediction Predict the beam properties based • Virtual diagnostics • Beam energy prediction
on accelerator parameters • Surrogate models • Accelerator design

• Active learning • Phase space
reconstruction

Optimization Achieve desired beam properties • Numerical optimizers • Injection efficiency
or states by tuning accelerator parameters • Bayesian optimization • Radiation intensity

• Genetic algorithm

Control Control the state of the beam in real time • Reinforcement learning • Trajectory steering
in a dynamically changing environment • Bayesian optimization • Instability control

• Extremum Seeking
1 non-exhaustive

start-up and operation, failure and interlock prediction, vir-
tual diagnostics, and intelligent control of beam dynamics
phenomena (see Fig. 3).
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Figure 3: A vision for future accelerators, driven by ML
methods.

On the one hand, this automation would increase the beam
availability for users due to faster commissioning times,
faster set-up of operation modes, interlock prediction, less
destructive measurements thanks to virtual diagnostics, and
the reduction in the mean time between failures thanks to
preventative maintenance. On the other hand, an online
targeted phase space manipulation could not only deliver tai-
lored beams and radiation to the users, but also actively mit-
igate beam instabilities. Paired with the increased speed in
accelerator operations, new special operation modes would
also be accessible. Swift changes between these operation
modes would be possible, with direct feedback from the
sample position at a beamline. Finally, the reduction of the

mean time between failures and energy responsibility efforts
would reduce the costs of operating an accelerator, making
it more reliable and sustainable. More details about energy
responsible accelerators are given in the following section.

Energy Responsible Accelerators
From a grid perspective, particle accelerators are electri-

cal loads in the order of hundreds of MWs with stringent
requirements on power quality and low flexibility in power
demand. The electrical grid is experiencing an increased
number of disturbances (faster, more frequent, and more
severe) caused by a decreased system inertia and increased
variability in the power production (i.e., renewables). In
addition, the energy cost steeply increased in many coun-
tries due to ongoing geopolitical conflicts. In view of these
trends, future accelerators can profit from being more energy-
efficient and resilient to external disturbances. Some steps
that can be taken in that direction are:

• Inclusion of renewable energy sources combined op-
timally with energy storage systems to maximize the
local energy production over the absorption from the
main grid.

• Use of alternative cooling sources, such as geothermal
energy, to increase the cooling efficiency and reduce
the dependence from the electrical grid.

• Implement flexibility options for accelerator operation,
to enable fast load variations in case of emergency:
data centers, cooling systems, experiment scheduling
based on green power production have great potential
to improve flexibility.

• Develop novel devices and systems that are able to
decrease the energy usage during accelerator opera-
tions: solid state amplifiers, permanent magnets, effi-
cient cryogenic systems, superconducting power supply
and distribution.
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A joint test field was created at KIT to address the energy
efficiency challenge, merging the Karlsruhe Research Ac-
celerator (KARA) and the Energy Lab 2.0, Europe’s largest
research infrastructure for renewable energy. This joint-lab
is called KITTEN (KIT Testfeld für Energieeffizienz und
Netzstabilität in großen Forschungsinfrastrukturen) and aims
to research energy sustainable and resilient solutions for ac-
celerators to reduce their carbon footprint. In the BMBF
project ”ACCelerator Energy System Stability - ACCESS”
the real-time power consumption data from the accelerator
will be fed to a digital twin that can emulate with high fi-
delity the accelerator power and energy dynamics during
power systems studies. This will allow to test energy storage
technologies or power electronics solutions in varying test-
ing conditions without affecting the real hardware. In this
context, the fast inference of ML methods can be used to pro-
vide important real-time insights, identify patterns, analyze
trends, and predict control actions to make the accelerators
more energy sustainable, efficient, and stable.

MACHINE LEARNING FOR LIGHT
SOURCES

Storage Rings
The common desiderata for photon beams produced in

4th generation light sources (4GLS) are high brilliance and
flux, coherent radiation, and tunability of wavelength, beam
size, polarization, and time structure. Additionally, the beam
has to be as stable in energy, intensity, position, and size as
possible.

Operating with ultra-low emittances comes with various
challenges [12], like for example a reduced lifetime due to
an increased Touschek scattering effect. The Touschek scat-
tering can be decreased using round beams, but flat beams
have a higher coherence and brightness and are therefore
preferred by the users. A multi-objective optimization algo-
rithm can find a compromise between both, optimizing for
both lifetime and brightness.

A stable beam size (source size) is also desired, as some
experiments are highly sensitive to intensity fluctuations.
Insertion device (ID) gap variations induce coherent tune
shifts that translate into orbit distortions, caused by their
integral field errors. This is usually compensated with local
and/or global orbit and linear optics corrections schemes, but
non-linear residual field errors persist and can significantly
affect the quality of the beam. For example, residual skew
quadrupole errors induce vertical beam size variations from
undesired coupling, and residual higher-order components
reduce the beam lifetime when the tune is near their reso-
nance [13]. In both cases, the quadrupole strengths (skew
or straight) can be used to change the optics and correct
the betatron coupling or move the betatron tune away from
resonances, respectively. ML methods have already been
applied to this problem, where for example neural networks
(NNs) were trained to predict the orbit distortion at 239
beam position monitors (BPMs) induced by 18 different ID
gaps [14] and extremum seeking (ES) was used to tune skew

quadrupoles to minimize the vertical emittance [15]. A more
detailed study can be found in Ref. [16], where beam size
predictions were done with NNs and used as a feed-forward
to stabilize the beam size. It was found that the levels of
stability achieved were roughly one order of magnitude bet-
ter than previously observed using model-based schemes,
fulfilling the requirements for future light sources.

Storage rings can provide photons at MHz repetition rates
but at a relatively low power. The intensity of the photons can
be amplified by increasing the spatial coherence between
the emitted waves, in which case the intensity will scale
quadratically with the number of electrons at full coherence
instead of linearly. This can be achieved by reducing the
bunch length to the scale of the emitted wavelength or with
the presence of substructures in a longer bunch, like the ones
created by the microbunching instability (MBI). The MBI is
a longitudinal collective instability that happens above a cer-
tain current threshold and is driven by the self-interaction of
the bunch with its own wakefield. It results in the formation
of substructures that emit bursts of coherent synchrotron
radiation (CSR) [17]. These bursts happen at a particular
frequency corresponding to the rate of growing and damping
of the charge substructures, a periodic phenomenon driven
by the non-equilibrium between the driving wake potential
and radiation damping, diffusion, and filamentation mecha-
nisms. This is observed as a partially periodic fluctuation
of the CSR amplitude in time, and a growing and shrinking
effect in longitudinal phase space. This bursting makes the
CSR power considerably fluctuate on timescales that are
difficult for users to average. Radio-frequency (RF) mod-
ulations can be used to stabilize the CSR power [18], but
requires a more intelligent control than a simple feedback
due to the continuously-evolving charge densities in longi-
tudinal phase space. Studies have been carried out towards
the control of the MBI with reinforcement learning (RL),
and a summary is presented in the last section of this paper.
Achieving control over the longitudinal phase space is par-
ticularly relevant for 4GLS, as they are mainly designed for
beam brilliance optimization and lack pulse flexibility and
variability for spectroscopy and timing experiments. Un-
precedented control of pulse length and pulse repetition rate
can make very flexible and tailored modes of operation pos-
sible. Additionally, such an intelligent feedback system can
open the door to the control of other types of instabilities
that deteriorate the beam quality and limit the bunch current
range for stable operation, which is especially relevant in
4GLS where instabilities are more significant.

Reaching ultra-low emittances require stronger sextupole
strengths for chromatic correction, which in turn reduce the
dynamic aperture and therefore the transverse acceptance.
For accelerators targeting two orders of magnitude reduction
in emittance the injection needs to be done on-axis to avoid
injection oscillations. Off-axis injection into storage rings
with methods such as Bayesian optimization (BO) have al-
ready been successfully implemented in light sources [19],
and similar or more advanced methods could assist novel
injection schemes.
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Special modes that are challenging to operate in exist-
ing machines can also be assisted by ML, like for example
negative momentum compaction factor 𝛼𝑐 operation. It is
designed to increase the dynamic aperture by reducing the
strength of the sextupoles and requires operation at negative
chromaticities and 𝛼𝑐 to avoid head-tail instabilities [20].
While the lifetime of this operation mode is lower than for
positive 𝛼𝑐, it has a considerable bunch shortening effect
that could be useful for particular experiments [21].

ML methods can certainly speed-up commissioning cam-
paigns in any type of accelerator [19, 22], and more effort
could be invested in developing an all-encompassing com-
missioning tool that leverages the advantages of ML.

Finally, ML can help in simulation by greatly reducing
accelerator design stages and developing new optics. 4GLS
have strongly nonlinear lattices where the optimization of
the dynamic aperture and momentum acceptance is complex
due to the dimensionality of the problem, the sensitive cor-
relation among those parameters, and stringent constraints.
Deep learning techniques have been developed to acceler-
ate lattice evaluation for 4GLS [23], which allows a faster
convergence to an optimal design. Accelerator design can
be further sped-up by active learning, where the surrogate
model is built iteratively with simulation points selected by
a model that guides the parameter space exploration based
on the uncertainty of the model (e.g., [24]).

Linear Accelerators
The existing and future free electron lasers (FELs) aim to

reach a higher repetition rate and provide unprecedented pre-
cise control over the light pulses, such as sub-femtosecond
pulses, higher peak power, flexible spectrum, and tunable
polarization [25, 26]. As opposed to a storage ring, which
can serve dozens of beamlines simultaneously, an FEL only
have a handful of beamlines and requires special modes like
multi-beam operation with a switchyard to provide the light
to the beamlines simultaneously. Therefore, it is common
that an FEL needs to switch operation modes multiple times
a day to provide the light tailored to the requirement of user
experiments. This necessitates methods and routines that
can automate and speed up the process of setting up the
accelerator for different operation modes. Various methods
have been designed and applied to aid such tuning tasks,
including the Nelder-Mead simplex algorithm, ES [27, 28],
and robust conjugate direction search (RCDS) [29, 30]. An
alternative approach, BO, is able to perform global opti-
mization efficiently. It has been successfully tested at mul-
tiple FEL facilities for tasks like optics matching to SASE
pulse energy optimization [31–33]. The BO algorithm can
also be modified to incorporate correlations of the tuning
parameters, safety constraints, and drifting systems, mak-
ing it applicable to a wide range of daily accelerator tasks.
Several software frameworks are developed collaboratively
to provide a standardized implementation of the advanced
optimization algorithms mentioned above and aid general
accelerator tuning tasks [34–36]. Such frameworks simplify
the sharing of models and algorithms across different facili-

ties, helping the transition of state-of-the-art ML methods
from research projects to operational tools.

Additionally, since FELs are single-pass accelerators and
one bunch only radiates at a single beamline, they possess
more freedom to modulate and tailor the pulses to the user
requirements [37, 38]. With more ML-based tuning tools
available for the operation of FLS, it can be expected that
the machine operation modes will be dynamically changed,
providing pulses according to the user’s needs throughout
the experiment.

In recent studies, RL proved to be able to solve various
beam tuning tasks at simpler setups [39–41], outperforming
existing numerical optimization methods. Once trained, the
RL policy can also handle system drifts and be used as
a continuous controller. With enough redundancy in the
system, it can even deal with unexpected scenarios such as
magnet power supply failures [42]. For future accelerators,
it is foreseeable that RL methods will be deployed as robust
controllers for complicated system dynamics, which will be
otherwise challenging or not possible using conventional
feedback controls.

Another challenge that future FELs face is diagnostic de-
vices. Especially for the case of longitudinal phase space
(LPS), existing diagnostics like transverse deflecting cavities
are often destructive, lack resolution for ultra-short bunches,
and need multi-shot measurements to reconstruct the full
phase space information. ML methods, such as NNs, can be
trained to provide rapid non-destructive predictions of the
LPS [43, 44], which can have higher resolutions compared
to the single shot measurements [45, 46]. The virtual diag-
nostics driven by the ML models can be used in combination
with real diagnostics to provide higher-fidelity information
on the electron bunch [47]. Future applications of ML-based
virtual diagnostics are expected to drastically increase the
information that can be obtained during operation to the
full 6D phase space of the electron bunch and simultaneous
prediction at various points along the accelerator.

The current X-ray free electron lasers (XFELs) are pre-
dominantly driven by RF-based accelerating structures,
which places them among the largest facilities worldwide.
There is active research to construct more compact XFELs
by accompanying advanced accelerating schemes. The most
promising one is the plasma-based accelerator (PBA), in-
cluding the laser wakefield accelerator (LWFA) and plasma
wakefield accelerator (PWFA) [48, 49]. The FELs impose
stringent constraints on the upstream beam parameters like
the energy spread and divergence, which remains an issue
of PBAs. The acceleration process in plasma depends non-
linearly on a large number of parameters, which are evolving
due to the dynamic nature of the plasma. An analytic solu-
tion is often not possible or not accurate enough, so online
tuning of the input parameters is constantly required in oper-
ation. Methods such as genetic algorithms and BO have been
successfully applied at LWFAs to improve various aspects
of the electron bunch, increasing the bunch charge and the
bunch energy, minimizing the energy spread, and reaching
a more stable state [50–53]. In addition to online tuning,
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Bayesian models and active learning can be used to build an
accurate data-driven model using either the particle-in-cell
(PIC) simulations or the experimental data [54–56]. This
allows to identify the underlying correlation between the pa-
rameters, extract new knowledge from the physics process,
and obtain an optimized set of design parameters trading off
different objectives for future operation.

TOWARDS THE CONTROL OF THE
MICROBUNCHING INSTABILITY AT KIT

The real-time control of the MBI with RL is actively being
researched at the storage ring KARA. Due to the dynamically
changing nature of the instability, classical feedback schemes
are not able to provide the required level of control. RL
is a powerful learning paradigm that is particularly well-
suited to tackle control problems in large environments, can
learn from experience without the need of a model of the
dynamics, and can deal with delayed consequences. RL
applications are very promising, but their deployment in
accelerators is challenging and has been done only a handful
of times. One of the difficulties of training RL agents is
that they need numerous interactions with the environment
to train, and this is too time-consuming to be done in low
repetition rate accelerators. This is why the RL agents are
usually pre-trained in simulation, although the transfer to the
real accelerator can be problematic when the gap between
the simulation and experiment is too large. In our case, the
data is generated in the accelerator at a faster rate than in
simulation, overcoming one of the main limitations of this
method. The goal of this project is to control the radiation
emitted by the MBI with RF modulations in order to stabilize
and maximize the radiation power. This will be achieved
with a control feedback loop, composed of the following
elements:

• CSR detection: broadband Schottky diode.

• Pulse digitization: KAPTURE-2 board, a low-latency
and high-throughput sampling system for continuous
sampling of ultra-short pulses developed at KIT [57].

• Data readout: HighFlex 2, a custom modular readout
card (Xilinx ZYNQ family).

• Low-latency RL inference platform: Xilinx Versal
VCK190 evaluation board, where the KIT-developed
KINGFISHER [58] platform allows to more easily train
agents on the accelerator.

• Feedback system: low-level RF (LLRF) amplitude and
phase modulation control, possible every six revolu-
tions.

The KAPTURE-2 board has 8 parallel sampling channels
with a sampling rate of 500 MS/s, designed for bunch-by-
bunch diagnostics at synchrotron light sources. This high
data throughput is handled by the Highflex 2 board, where
the analog-to-digital converters (ADCs) samples are labeled

with the bunch number information and optional metadata.
These data are then sent to the Versal board through a high-
speed fiber optic link, where the RL algorithm is imple-
mented. This board combines an FPGA, an ARM processor,
and programmable AI-engines, which are interconnected
by a high-bandwidth Network-on-a-Chip (NoC) and allow
full customization of the data flow. In this feedback system
the more computationally heavy operations, namely feature
extraction and agent inference, are carried out by the AI
Engines, while the ARM processor runs the slow-control
and the training algorithms as Petalinux applications. The
system is designed as an experience accumulator, where the
interaction of the RL agent with the accelerator is stored
in the DDR memory. This data can then be used to train
the model on several different platforms, ranging from the
conventional CPU of a control room computer to a GPU
equipped server, or to the ARM processor on a Versal board
for cases with a particularly simple model, which would
reduce the time needed for data access.

In order to influence the longitudinal beam dynamics the
control feedback loop needs to act within a few synchrotron
periods, imposing a latency constraint of tens of microsec-
onds. This system was tested at KARA, showing a latency
of 2.5 µs for inference [59].

Results
The feasibility of the MBI control with RL was first tested

in simulation, with encouranging results [60].
Due to needed hardware and firmware modifications to the

LLRF to accept the continuous signal generated by the RL
agent, the testing of the feedback loop for MBI control was
postponed. However, in order to already test the concept, the
feedback loop was adapted to sample a BPM signal and the
RL agent was designed to damp transverse oscillations with
a stripline kicker, replacing the bunch-by-bunch feedback
system. The RL agent was deployed in the Versal board and
tested during beamtime without being previously trained.
The agent learned purely through interaction with the ma-
chine in several episodes of 2048 turns, and was re-trained
after every episode on the control room computers. The RL
agent performed equally or better than the conventional feed-
back system, validating the design of the control feedback
loop. The results will be summarized for publication.

SUMMARY AND OUTLOOK
ML methods are powerful tools that can improve the per-

formance of existing accelerators and create a new generation
of autonomous ones, helping future accelerators become vi-
able and sustainable and changing the way they are operated.
As shown in this contribution, ML is already being used by
the accelerator community to solve a variety of problems,
where an untapped wealth of applications remains to be
discovered. More advanced concepts like explainability, ro-
bustness, safety, and uncertainty quantification will need to
be considered, as well as hardware infrastructure upgrades,
to make ML methods become regular tools in accelerators.
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