ERL Based Multi-pointing Fully Coherent Light Source

Zhen Wang

67th ICFA Beam Dynamics Workshop on Future Light Source August 30th, 2023

outline

From SR to fully coherent radiation

- Coherent harmonic generation
- Echo-enabled harmonic generation
- Angular dispersion induced microbunching
- Reversible modulation

An ERL Light Source for Coherent Radiation

- ADM + ERL
- high-flux mode and high-resolution mode
- Multi-pointing system
 - Large angle bending system
 - 5 times radiation
- Two Further Considerations on ADM based ERL
 - 3GeV single turn ERL
 - 1.5GeV double-turn ERL
- Summary

From SR to fully coherent radiation

Synchrotron Radiation is incoherent with random distribution beam
Fully coherent radiation is the SR with microbunched beam
The key to generate microbunching is to modulate the beam with seed laser

How to generate microbunching

Angular dispersion induced microbunching

High rep-rate seed laser with current available technology

Chao Feng, Zhentang Zhao, Scientific reports, 7, 4724 (2017)

Coherent radiation scheme: CHG vs ADM

Storage ring based coherent radiation

Coherent harmonic generation in VUV with the optical klystron on the storage ring Super-ACO

R. Prazeres ^a, P. Guyot-Sionnest ^a, J.M. Ortega ^{a,b}, D. Jaroszynski ^{a,c}, M. Billardon ^{a,b}, M.E. Couprie ^{a,c}, M. Velghe ^{a,d} and Y. Petroff ^a

^a LURE, CNRS/CEA/MEN, bât 209d, Université de Paris-sud, 91405 Orsay cedex, France

^b Ecole Supérieure de Physique Chimie, 10 rue Vauquelin, 75231 Paris, France ^c CEA/DSM/DPhG/SPAS, CEN Saclay, 91191 Gif-sur-Yvette, France

^d LPPM, Université de Paris-sud, 91405 Orsay cedex, France

Challenge: high requirement for seed laser and energy spread degradation

Storage ring based coherent radiation

Proceedings of FEL2011, Shanghai, China

REVERSIBLE SEEDING IN STORAGE RINGS

Daniel Ratner* and Alex Chao, SLAC, Menlo Park, California, USA

Challenge: sensitive to the lattice and scheme complex

> Merits of ERL:

- High quality electron beams with R2F
- Always fresh electron beam
- High repetition rate
- > Demerit of ERL
 - Low achievable average current (tens of mA) and peak current (<100A), so no high-gain at short wavelength
- Reasons for Implementing ADM on ERL
 - Less requirements of ADM on the seed laser power and electron beam current
 - Generate high repetition rate, high average brilliance and fully coherent pulse
- The brightness of ERL with ADM would be over 10²⁵ (phs/s/mm²/mrad²/0.1%BW), which is 10^{3~4} times higher than that of DLSR with the same beam energy
- The average power can be over 100W at 13.5 nm

ERL based multi-pointing fully coherent light source

ERL based multi-pointing fully coherent light source

Round to flat technique (R2F)

- > Flat electron beams:
 - Beams with large transverse emittance ratios
 - Enhance the microbunching of ADM
- Generate a flat beam directly out of a photoinjector:
 - Immerse the photocathode in an axial magnetic field to generat a magnetized beam.
 - After acceleration, use three skew quadrupole to transform the beam into a flat beam.

FIG. 1. Overview of the Fermilab/NICADD photoinjector. "X" refer to diagnostics stations (beam viewers, and/or slit location), "L" to the solenoidal lenses, "Q" to quadrupoles, and "S" to the skew quadrupoles. All distances are in mm, with D = 800 (or 1850 for the data presented in Fig. 7).

Piot, P., Sun, Y.-E. & Kim, K.-J. Photoinjector generation of a fat electron beam with transverse emittance ratio of 100. Phys. Rev. ST Accel. Beams 9, 031001. https://doi.org/10.1103/PhysRevSTAB.9.031001 (2006).

Example of the transformation of the incoming angular-momentum-dominated round beam into a flat beam.

Top row: measurements; bottom row: corresponding numerical simulations.

Lattice for the Arc

Emittances evolution of the half arc(left) and the layout and optical function of one TBA cell(right).

Parameters	Value	units
Energy(injector)	15	MeV
Energy(linac)	600	MeV
Nor. Emittance(injector)	0.5	μm
Nor. Emittance(linac/und.)	5/0.05	μm
Bunch charge	77	pC
Pulse duration(linac)	4	ps
Pulse duration(undulator)	0.7/4	ps
Peak current	100/15	А
Relative energy spread	0.1	%
DC gun voltage	550	kV
Repetition rate	1.3	GHz
Drive laser duration	20	ps
Drive laser spot size	0.5	mm
Bend angle in the arc	30	0

High flux & high resolution mode

- Adjust the phase/amplitude of the linac to optimize the beam energy chirp, the beam will be compressed in the arc section.

~257nm seed laser from forth harmonic generation of the fiber laser

density modulation and bunching factors at various harmonics of the seed laser

High flux & high resolution mode

Radiation pulses and spectra at the exit of the radiator with high-flux mode (up) and high-resolution mode (down).

high-flux mode (suitable for EUV lithography)

peak power: 120kW spectral bandwidth: 3.5meV average output power: 100W average brightness: 10²⁵ phs/s/mm²/mrad²/0.1%BW

high-resolution mode (suitable for ARPES):

radiation pulses length: 6ps spectral bandwidth: 0.4meV@13.5 nm average output power: 19W

Parameters	Value (high-flux/resolution mode)	Units
Bending angle	0.2	rad
Modulator period	3.5	cm
Modulator length	3	m
Radiator period	2	cm
Radiator length	3	m
Seed laser wavelength	256.5	nm
Seed laser duration	2/10	ps
Seed laser peak power	10	kW
Radiation wavelength	13.5	nm
Radiation peak power	120/2.5	kW
Radiation pulse length	0.7/6	ps
Radiation pulse energy	84/15	nJ
Average output power	100/19	W

Multi-pointing system

 $R_{56}/\mu m$

one FODO cell			
$\begin{pmatrix} 1 - \frac{\theta^2}{2} & \rho\theta & 0 & 0 & 0 & \frac{\rho\theta^2}{2} \end{pmatrix} \qquad \qquad \begin{pmatrix} \cosh k_s & \frac{\sinh k_s}{k_s} & 0 & 0 & 0 \end{pmatrix}$	Parameter	Value	Units
$\begin{bmatrix} -\frac{\theta}{\rho} & 1 - \frac{\theta^2}{2} & 0 & 0 & \theta \\ 0 & 0 & 1 & \rho\theta & 0 & 0 \end{bmatrix} \begin{bmatrix} k_s sinhk_s & coshk_s & 0 & 0 & 0 \\ 0 & 0 & cosk_s & \frac{sink_s}{2} & 0 & 0 \end{bmatrix}$	bend length	0.15	m
$R_B = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, R_{QD} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -k_s sink_s cosk_s & 0 & 0 \\ 0 & 0 & 0 & -k_s sink_s cosk_s & 0 & 0 \end{bmatrix},$	bend angle	1	mrad
$ \begin{pmatrix} -\theta & -\frac{\mu_0}{2} & 0 & 0 & 1 & -\frac{\mu_0}{6} \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} $	Quadrupole length	0.15	m
$\left(\begin{array}{ccc} cosk_s & \frac{sink_s}{k_s} & 0 & 0 & 0 \end{array}\right)$ $\left(\begin{array}{cccc} 1 & l & 0 & 0 & 0 \end{array}\right)$	QF strength	3.785	$1/m^2$
$R_{QF} = \begin{bmatrix} -k_s sink_s \ cosk_s \ 0 \ 0 \ 0 \ 0 \ coshk_s \ \frac{sinhk_s}{k_s} \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0$	QD strength	-3.785	$1/m^2$
	Sextupole length	0.25	m
$ \left(\begin{array}{cccc} 0 & 0 & 0 & 0 & 10 \\ 0 & 0 & 0 & 0 & 01 \end{array}\right) \qquad \qquad \left(\begin{array}{cccc} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right) $	SF1 strength	1042	$1/m^3$
	SF2 strength	1346	$1/m^3$
$T_{226} = -T_{116} = T_{512} = 0, T_{446} = -T_{336} = T_{534} = 0,$	SD1 strength	-2968	$1/m^3$
$T_{216} = 2T_{511}, T_{126} = -2T_{522},$	SD2 strength	-682	$1/m^3$
	R_{56}	19.5	μm
$T_{436} = 2T_{533}, T_{346} = -2T_{544},$	T_{566}	14.8	$\mu \mathrm{m}$
$T_{516} = 2T_{266}, T_{526} = -2T_{166}.$			

Multi-pointing system

The twiss functions (left), emittance evolution (middle) and vertical beam size evolution (right)

Longitudinal phase space and bunching factor of the beam after four times bending system

Multi-pointing system

Power distribution

Spectra

3GeV single turn ERL light source

Schematic layout of a 3 GeV single turn ERL light source

- The recirculating loop has a long straight section (about 500 m) and two 180° arcs (570 m long per arc).
- Each arc comprises 18 periodical TBA cells which are isochronous.

Parameters	Value	Units
Beam energy	3	GeV
Normalized emittance	0.5	mm-mrad
Peak current	15	А
Bunch charge	77/8	pC
Repetition rage	1.3	GHz
Average current	100/10	mA

Main beam parameters of the 3 GeV single turn ERL light source

The emittance evolution (left) and the optical function in each TBA cell (right)

3GeV multi-turn ERL light source

A possible layout for a fully coherent x-ray light source based on ERL

- main issue: the maintenance of the beam quality as the electron beam passes through the 1.5 GeV ring
- 3D simulation results show that the quality of the electron beam can be well maintained to generate high repetition rate coherent x-ray pulses

- Multi-turn acceleration and deceleration can reduce the scale of the high energy ERLs significantly
- Half of the electron bunches are seeded in the 1.5 GeV ring and generate EUV coherent radiation
- Another half of the electron bunches are accelerated twice to 3GeV for X-ray radiation generation

The emittance evolution (left) and the optical function in each TBA cell (right)

We report a new method for high repetition rate fully coherent pulse generation by taking fully advantages of the ERL and ADM.

- The proposed light source holds the merits such as fully coherent radiation with a brightness 5–6 orders of magnitude higher than that of a DLSR with the same beam energy, and much higher repetition rate comparing with an FEL.
- We also propose two future ERL light sources to generate fully coherent EUV and X-ray radiation, and consider a multi-point radiation emitting system consists of DBAs and radiators to support multi-user operation.
- However, limited by the photoinjector and the HOM BBU effect, the 100-mA-level average current is a big challenge. Meanwhile, dominated by the injector, the energy jitter, temporal jitter and the temporal stability might become larger than storage rings.
- □ The ADM technique has not been experimentally demonstrated yet, but a proof-ofprinciple experiment of ADM is under preparation at the Shanghai Soft X-ray FEL facility.

Thank you!

