

67th ICFA Advanced Beam Dynamics Workshop on Future Light Sources (FLS 2023), Lucerne, Switzerland, from 27 August to 1 September 2023

Harmonic Generation from keVelectron-excited Nano-grating

Yen-Chieh Huang, Luo-Hao Peng, Hossein Shirvani, Wen-Chi Chen, Karthickraj Muthuramalingam, Wei-Chih Wang, and Andrzej Szczepkowicz

> HOPE Laboratory, Institute of Photonics Technologies National Tsinghua University (NTHU), Hsinchu, Taiwan

> > ychuang@ee.nthu.edu.tw

Future light source?

[An imaginary file picture released by Hanwha Corporation]

Both the strong and the weak shape up the future....

How long have we struggled with emittance, energy spread, space-charge force, and bunching?

Let's pick up just one electron...

Single-electron sources

(1) CW-current TEM: Nano-Ampere

(2) fs-laser-excited TEM: ~1 electron per pulse @ ~100 MHz

a train of single electrons

Dielectric Laser Accelerator

dielectric laser accelerator

periodic single electrons ina nano-channel (repeating@ drive laser freq.)

https://achip.stanford.edu/

Dielectric-grating-waveguide FEL Chip – 1-D photonic crystal

Design Guidelines

Yen-Chieh Huang, Luo-Hao Peng, Hossein Shirvani, Wen-Chi Chen, Karthickraj Muthuramalingam, Wei-Chih Wang, and Andrzej Szczepkowicz, "Single-electron Nano-chip Free-electron Laser," APL Photonics 7, 096101 (2022). (editor featured article and cover story of the journal).

Maximum impedance contrast $t_g = \frac{\lambda_y}{4} = \frac{\lambda_0}{4n_f \sin \phi} = \frac{\beta_e \lambda_0}{4\sqrt{\beta_e^2 n_f^2 - 1}},$ Bragg Resonant Condition $\Lambda_g = \beta_e \frac{\lambda_0}{2}.$ Single-mode guiding condition $t_f < \frac{\lambda_0}{2\sqrt{n_f^2 - n_s^2}}.$

TABLE I. The first-order design parameters for a 1.5- μ m nano-chip FEL with a silicon ($n_f = 3.4$) grating waveguide on a glass substrate ($n_s = 1.5$).

Design	Electron	Grating	Grating	Film	Impact
wavelength	energy	period	depth	thickness	parameter
(µm)	(keV)	Λ _g (nm)	t _g (nm)	t_f (nm)	<i>l_{ip}</i> (nm)
1.5	50	310	160	240	100

for λ_0 = 1.5 µm (0.2 PHz), 50-keV electron Structure length = 31 µm

Dispersion Diagram

H_x Field Animation

Grating-waveguide FEL driven by Periodic Single Electrons

H_x Field Patterns

Harmonic Radiation Spectrum

Experiment

TEM experimental chamber

Fabricated structure on Si (courtesy of Prof.Wei-Chih Wang of NTHU)

Radiation from Silica Nanosphere

Radiation from Silica Microsphere Xuan-Long Ho

Xuan-Long Ho

Radiation from optical superlattice

彭珞豪, Xuan-Long Ho, Alexey Kopeykin<u>, Evgenii Kalinovets</u>,

88 quarter-wave dielectric layers with a stopband between 550-675 nm

Owing to the grating resonance, the spectrum from the fiber grating is red-shifted with respect to that without the grating. The backward radiation after the grating (point 1) is blocked by the grating at the 3rd order Bragg resonance.

Conclusions

I.A free electron interacting with photonic structures opens up opportunities for ultra-compact coherent radiation sources.

2. Single-electron FEL built upon a dielectric-grating waveguide is numerically demonstrated at 0.2 PHz and its harmonics.

3. Experimental tests are on-going by using a TEM beam.

