Compact HOM-damped RF Cavity for a Next Generation Light Source

H. Ego KEK & QST

T. Inagaki, H. Tanaka, RIKEN SPring-8 Center
T. Asaka, N. Nishimori, QST
T. Ohshima, T. Tomai, H. Yamaguchi, JASRI

FLS2023, 29 August 2023

Contents

- Motivation for compact HOM-damped cavity
- HOM-damping structure by using TM020 mode
- Cavity fabrication
- Demonstrations
- Summary

Existing HOM-damned cavities 625 MHz homogeneous waveguides 615 MHz tapered waveguides (CWCTs) measurements with tapered waveguides tapered circular double ridged HOM-waveguide with coaxial transition (CWCT) E VALVE 50Ω coaxial line (to absorber) SLS rf-vacuum window PER diagnostic ports 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 0 32 eam tubes frequency (GHz) R_{\parallel} (k Ω /m) 250 MP 625 MHz homogeneous waveguides 615 MHz tapered waveguides (CWCTs) measurements with tapered waveguides 200 ALBA_ pickup port (not visible) 0.5 m DELTA 37 E. Weihreter, EPAC08, p.2936 150 50 NSRRC FLETTE ALS 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 frequency (GHz) ama et al., PAC97, p.2902

Massive cavities with HOM-damping waveguides or/and pipes

φ

RF cavity with compact HOM-damping structure

Where are HOM dampers?

RF cavity with compact HOM-damping structure

16 HOM dampers directly embedded into the cavity body

HOM damper

Ferrite bars

- Ferrite bars brazed to the curving flange
- Water cooling channel provided in flange
- No change in cavity size by installing HOM dampers

How to compact HOM-damping system

Use TM020 mode and slots

Slots along the nodes of magnetic fields and parallel to electric fields \rightarrow No field intrusion of the TM020 mode

How to compact HOM-damping system

Fields of monopole and dipole modes except TM020 mode get into the slots

How to compact HOM-damping system

• with HOM dampers

HOM dampers directly installed in the cavity body !

Cavity structure -prototype-

Cavity Assembling

Bolt-fastened three-part structure

nose-cone plate + main body + nose-cone plate made of Class I copper

HOM-damping structure

HOM-damping slot

= Gap between the nose-cone plate and main body

Nose-cone plate

- Easily removable nose-cone plate enabling frequency adjustment by machining the face
- Mount for removable HOM dampers

New coupler with coupling tuner

Coupling β adjustable to the value best for beam loading during high-power operation in vacuum

Measurements on RF properties

TM020 properties of the prototype without HOM damper

frequency [MHz]	508.550
Q_0	59,960
Q_{ex}	54,150
β	I.I

Q values of the cavity with eight HOM dampers

TM020	59,150
TM010	420
TMII0	760

monopole

dipole

Ceramics window

- Low height of WR-1500 (381x100)
- Capable power transmission of 600 kW
- Set to the waveguide at the electric node when reflection
- Easily exchangeable

Set-up for high-power operation

2 stage tests were performed without / with HOM dampers

Installed 4 HOM dampers in each nose-cone section

No HOM damper

I 35kW high-power test for the cavity without HOM damper

deliberate up-down operation

135 120 100 large gas-burst around I kW P [kw] 80 60 40 20 0 1.0E-3 1.0E-4 Vac [Pa] 1.0E-5 1.0E-6 1.0E-7 ceramics window 60 Temp [°C] 50 40 30 20 10 20 30 40 0 time [h]

50 hours up to 135 kW over the rated power of 120 kW

I 35kW high-power test for the cavity with HOM dampers

58 hours up to I 35 kW (finally up to I 50 kW)

Cavities in NanoTerasu

NanoTerasu : 3 GeV Next Generation Light Source in Japan

Four cavities have begun to accelerate a beam

Summary

- Compact HOM-damping system working well by using TM020 mode
- Feasible prototype cavity and HOM dampers
- Successful high-power operation up to 135 kW
- Beam acceleration in NanoTerasu

Thank you for your attention.