Developments in SRF Technology for Light Source Applications

Dan Gonnella SC-Linac-Physics Department Head SLAC National Accelerator Laboratory

Workshop on Future Light Sources 29 August 2023

The name of the game is Q_0

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Outline

Achieving High Q₀ in SRF Accelerators

LCLS-II-HE at SLAC

SRF Developments at Fermilab

SRF Activities and Plans at DESY

Summary & Outlook

Achieving High Q₀ in SRF Accelerators

W. Singer et. al.

Nitrogen-Doping Process

Nitrogen-Doped Cavity Performance

- Compare with standard cavities:
 - XFEL preparation typically produced cavities with a medium field Q slope starting at ~5 MV/m
 - Nitrogen-doping results in a drastic improvement in Q_0
 - MFQS disappears and an "anti-Q slope" manifests
 - Historically this would also result in a lower quench field
- Further developments in SRF technology have been based on this general concept

Can we reach higher Q₀? Can we increase the gradient achieved with high Q₀?

LCLS-II Vertical Test Cavity Performance

- Gradient performance typically exceeded the LCLS-II requirements in VT
- Significant improvements to processes were made throughout production which led to an increased yield
- New processes led to an average maximum gradient of 23±3 MV/m

- Q₀ performance from the production doped cavities was excellent
- A change in heat treatment temperatures resulted in improved flux expulsion which led to consistently higher Q₀
- Able to achieve an average Q₀ of (3.3±0.4)x10¹⁰ at 16 MV/m and 2 K

Realization of High Q_0 in an Operating Accelerator

- The LCLS-II cryomodules show an average of 2.8x10¹⁰ has been observed, exceeding the spec of 2.7x10¹⁰
- Low performers can likely be improved by additional CM degaussing

Demonstrates High Q₀ in an installed linac for the first time

LCLS-II-HE at SLAC

LCLS-II-HE Overview

- 1. Add 23 additional cryomodules (L4 linac) to double the LCLS-II accelerator energy: 4 GeV to 8 GeV
- 2. Install new cryogenic distribution box and transfer line between the cryoplant and the new L4 linac
- 3. New long period soft X-ray undulator
- 4. Upgrade the LCLS hard X-ray instruments for MHz beam and data rates
- 5. Design low-emittance injector and SRF gun for extended hard X-ray performance

LCLS-II-HE Overview

LCLS-II-HE improved cavity processing

LCLS-II

Additional changes:

- Continuous RGA spectrum during furnace runs
- Continuous monitoring of temperatures during electropolishing runs
- Sort cavity half-cell material by required heat treatment temperature

LCLS-II-HE: Cavity Performance Improvements

Multipacting Processing

- Multipacting identified as a gradient limitation for LCLS-II cavities late in CM production
- Observed as a short term stability at gradient in the band of 17-23 MV/m
- Processing techniques developed and tested by LCLS-II-HE team and applied to a subset of cavities in the installed linac
 - Consists of repeatedly quenching the cavity in CW mode with limited time (few seconds) for recovery
- Multipacting has not returned after >3 months effects of processing persist through thermal cycles

Average gradient gain of ~3 MV/m observed in 37 cavities processed

LCLS-II-HE SRF Gun - Goal 0.1 µm emittance

- Blank cavity has been assembled and tested
- Achieved 29 MV/m before Field Emission, will be retested after further EP
- Full second cavity with cathode stalk will be delivered to SLAC in 2025

FRIB

- Reducing emittance is the most economical path to harder x-rays
- Low emittance starts at the source need a semiconductor cathode in 30 MV/m gradient
- R&D effort at MSU to demonstrate cavity

SRF Developments at Fermilab

Slides courtesy of D. Bafia

Tuning Nb SRF Cavity Performance with O Impurities

Recently learned that thermally diffused **oxygen impurities** alone can be used to tune Nb SRF cavities for **high gradient or high Q**₀!

Quench Optimization Study: D. Bafia, H. Hu

Extending Gradients Further with the Traveling Wave Design

- Standing wave Nb cavities limited E_{acc} by H_{sh}
- Alternative: Niobium traveling wave structure
 - ▶ RF power returned *via* feedback Nb waveguide
 → Lowers peak fields in cavity
 - Possible to achieve E_{acc} > 70 MV/m!!

Current Status:

- 1-cell: designed, treated (BCP), and tested
 - Achieved 26 MV/m in RF testing
- 3-cell: designed and treated (BCP)
 - Tuning just completed
 - RF testing scheduled for this summer
 - TW operation demonstrated at room temp!
- 0.5 m structure currently being designed in collaboration w/ Cornell

*Euclid Techlabs DOE SBIR DE-FG02-06ER84462 and DE-SC0006300.

Improving 650 MHz Performance Further via Optimized EP

V. Chouhan, SRF'23

- Proper electropolishing (EP) is critical in enabling excellent cavity performance
 → Smooth surface, minimal uptake of H
- Developed a novel cathode and optimal EP parameters for 5-cell 650 MHz cavities for PIP-II

Optimized design and parameters yields unprecedented performance in high-β 650 MHz EP'd cavities!

Patented

SRF Activities and Plans at DESY

Slides courtesy of L. Steder, M. Wenskat, and E. Vogel

HELMHOLTZ

High Duty Cycle options for EuXFEL

we aim for a wide range of operation modi

- Preparation for **possible EuXFEL upgrade 2030+**
 - two-fold machine: High Duty Cycle (HDC) including CW mode in parallel to pulsed mode
 - upgrade roadmap depending on overall strategy of DESY
 - exchange of up to 17 accelerator modules: need for about 160 new 9-cell SRF cavities
- SRF technology R&D @ DESY
 - prepare new generation of experts for series production of SRF cavities and modules
 - include state of the art processes and lessons learnt e.g. at EuXFEL, LCLS II-HE and SHINE
 - TESLA cavities
 - revision and upgrade of EuXFEL cavity specification
 - development of new surface treatment (mid-T) parameters for optimized cavity performance
 - SRF accelerator modules
 - extensive HDC and CW tests of standard EuXFEL modules
 - revision of e.g. 4K-shield and coupler parts

Pushing Niobium to its limits – and beyond

project-oriented R&D hand in hand with fundamental R&D

- To enable the EuXFEL upgrade 2030+, we need to
 - **reliably** achieve $Q_0 \ge 2.7 \times 10^{10}$ @ 16-20 MV/m **AND** $E_{acc} \approx 30$ MV/m for pulsed mode \rightarrow recipe not existing yet
 - **transfer** the respective recipe **to industry** identify key parameters of the process for technical description
- To achieve this: project-oriented R&D hand in hand with fundamental R&D
 - systematic RF studies on cavities (1-cell and 9-cell) and samples (Quadrupole Resonator)
 - material studies to understand (sub)-surface processes & links to RF performance
 - study magnetic behavior of cavities and samples, e.g. with new B-mapping system
- Sustained SRF accelerator technology needs to address generic R&D:
 - coating alternating insulator & higher T_c superconductor onto Nb "S/S" using atomic layer deposition (ALD)
 We already developed recipe on samples, successfully coated cavities with insulator
 - **ultimate goal**: >70 MV/m with a Q_0 of 1x10¹⁰ and at 4K

SRF photoinjector status at DESY

present R&D status and activities (8/2023)

Goal:

- CW "pancake" bunches to match L-band linac w/o buncher
- peak-on-axis gradients above 40 MV/m required

Key R&D items:

- surface treatment of "special" geometry for high gradients https://www.ipac23.org/preproc/pdf/WEPA145.pdf
- cathode and its insertion w/o causing contamination

Concept for the cathode:

- · screwed in cleanroom to the cavity backside
- metal as cathode material with QE beyond 10⁻⁴

Status of the R&D:

- typical peak on axis gradients around 55 MV/m achieved!
- some of the metal cathodes being studied and tested:
 - Nb plug with Pb coating: better adhesion required
 - nano-structured Pb for plasmonic state QE enhancement
 - surface treated Cu plug
- work in progress and in planning phase:
 - cold integration like He-vessel, tuner, cryostat, \dots
 - test stand with beam line to study beam properties

"full metal" SRF gun cavity indium gasket metal plug niobium

several generations of cavities

6G2

purpose: testing cold integration, cathodes in SRF cavities, alignment, beam quality, beam stability, CW operation...

Summary & Outlook

- Advancements in SRF Technology have accelerated over the last 15 years due to investments from new light sources such as EU-XFEL, LCLS-II, and LCLS-II-HE
- Nitrogen-doping paved the way for a new understanding and method for achieving high Q_0 in SRF cavities
- The boundaries of performance continue to be pushed by future projects, particularly light sources
- LCLS-II-HE R&D has pushed standard nitrogen-doping cavity performance to new levels
- Fundamental developments at Fermilab and DESY continue to improve our understanding and open the door for better performance
- SRF Guns are in development around the world with a goal of lowering emittance for harder x-rays
- Developments continue around the world with other projects not mentioned here, particularly SHINE in China
- Performance improvement has no sign of slowing down!