

FLS2023, Lucerne

Pyapas: A new framework for High-Level Application development at HEPS

Xiaohan Lu, Yi Jiao 2023/08/29

HEPS, Beijing

Content

HLA development requirements of HEPS

- Pyapas for HLA development at HEPS
- HLA development based on Pyapas
- Conclusion

HLA development requirements of HEPS

> Pyapas for HLA development at HEPS

> HLA development based on *Pyapas*

Conclusion

Introduction to HEPS

High Energy Photon Source

One of the world's brightest fourth-generation synchrotron light sources

Regator		Linco		APS-U	ESRF- EBS	MAX-IV	Sirius	HEPS
Booster		Linac	E(GeV)	6	6	3	3	6
			C(m)	1104	844.4	528	518	1360.4
			Lattice	7BA	7BA	7BA	5BA	7BA
			Cell	40	32	20	20	48
		Storage Ring &Experiment Hall	Emittance (pm*rad)	42	150	330	250	34
			Brightness	> 10 ²²	> 10 ²²	$\sim 10^{21}$	$\sim 10^{21}$	> 10 ²²
	User Service Bu	ilding	Construction period	2018- 2024	2015- 2020	2010- 2016	2015- 2018	2019~ 2025

- ✓ The facility has the capacity for more than 90 high-performance beamlines and can provide X-rays with energy up to 300 keV
- ✓ The facility offers 10nm spatial resolution, 1MeV energy resolution, and picosecond time resolution for high-frequency dynamic detection

- $\checkmark\,$ 2019.12, the physical design was frozen
- $\checkmark~2021.06,$ installation of the first equipment

些改高能物理研究所

- ✓ 2022.03, the tunnel installation of the Linac started
- pre-alignment installation of booster started
- ✓ 2022.05, Linac full-line vacuum sealing was completed
- $\checkmark~2022.08,$ the tunnel installation of the booster started
- ✓ 2022.09, high-power online conditioning completed
- ✓ 2023.01, booster full-line vacuum sealing was completed
- $\checkmark\,$ 2023.02, the ring tunnel installation started
- ✓ 2023.03, obtained radiation protection of the Linac and started beam commissioning
- $\checkmark\,$ 2023.06, completed process acceptance of the Linac
- $\checkmark\,$ 2023.07, beam commissioning of the booster started
- ✓ 2023.08, the energy of booster ramp to 6GeV

Cai Meng, this workshop, Poster ID: TU4P27

Comparsion of design and measurement parameters of Linac

D	T T •/	Design		Measurement			
Parameter	Unit	Mode1	Mode2	Mode1	Mode2		
Pulse charge	nC	≥2.5	≥ 7.0	$2.84{\pm}0.02$	7.29 ± 0.02		
Energy	MeV	≥500	≥500	501.4	501.2		
Energy spread	%	≤0.5	≤0.5	0.31	0.45		
Energy stability	0/2	± 0.25	± 0.25	σ=0.014	σ=0.014		
Lifergy stability	/0	±0.25	±0.25	peak-peak=0.04	peak-peak=0.05		
Repetition rate	Цa	50	50	50	50		
(Burst mode)	пz	50	50	(10 pulse/s)	(10 pulse/s)		
Geometric	nmirad	<11	<70	37.2 (H)	56.4 (H)		
emittance	minifad	<u>_</u> 41	≤ 10	36.9 (V)	58.5 (V)		

Courtesy of Cai Meng

The development requirements for HLA of HEPS

→The emittance is reduced by 1or 2 orders of magnitude, approaching the X-ray diffraction limit
→The number of magnets increases by an order of magnitude

科學院高能物理研究所

nsititute of High Energy Physics , Chinese Acedemy of Scient

HEPS is currently the largest particle accelerator facility in the country.

- High control complexity
- Large scale of control variables
- High precision control required
- Large number of HLAs required

Overall control structure of HEPS

High level physical application focus more on physical process: optimization, simulation, feedback et.al.

> High Level Application (HLA)

- High control complexity
- Large scale of control variables
- High precision control required
- Large number of HLAs required
- Focus on physical process

Operational light sources of the world

More and more control rooms are using Python

Source: https://lightsources.org/lightsources-of-the-world/

HLA development plan for HEPS

Stragety/ Framework	Language	GUI	Communication with Hardware	Physical model	Database	
ASD-AOP	C++/Fortran	Tk/Tcl	EPICS	Elegant	~	APS
SAD	C++/Fortran	Tk/Tcl	EPICS	SAD	~	KEK/ BEPC
OpenXAL	Java	Swing	EPICS	Online model	Mysql	SNS/CSNS
LSA(CERN)	Java	Swing	EPICS	MAD	Oracle	CERN/DESY
MML-AT	Matlab	Matlab	EPICS	AT	Oracle	90% light source
Tango-AT	Java/Python	Swing/PyQt	Tango	AT	Mysql	ESRF/ALBA
SARDANA	C++/Python	Qt	Tango	AT	Mysql	ALBA/MAX-IV
						HEPS??

HLA development plan for HEPS

Stragety/ Framework	Language	GUI	Communication with Hardware	Physical model	Database	
ASD-AOP	C++/Fortran	Tk/Tcl	EPICS	Elegant	~	APS
SAD	C++/Fortran	Tk/Tcl	EPICS	SAD	~	KEK/BEPC
OpenXAL	Java	Swing	EPICS	Online model	Mysql	SNS/CSNS
LSA(CERN)	Java	Swing	EPICS	MAD	Oracle	CERN/DESY
MML-AT	Matlab	Matlab	EPICS	AT	Oracle	90% light source
Tango-AT	Java/Python	Swing/PyQt	Tango	AT	Mysql	ESRF/ALBA
SARDANA	C++/Python	Qt	Tango	AT	Mysql	ALBA/MAX-IV
Pyapas	Python	PyQt5	EPICS	Ocelot/pyAT	Mysql	HEPS

Porting the framework is almost as much work as building it from scratch with Python.

學院高能物理研究所

MML is based on Matlab which is commercial software, not a budget-friendly option!

> A Python-based framework will save lots of time.

Develop a brand-new framework based on Python to develop HLA.

> HLA development requirements of HEPS

Pyapas for HLA development at HEPS

> HLA development based on *Pyapas*

Conclusion

HLA Requirements Analysis

For physics developers, the following steps are overly complex. Independent development by each individual would be time-consuming

Pyapas Architecture Design (Python-based accelerator physics application set)

- ✓ Based on Physical Quantities
- ✓ Model-Based
- ✓ Modular Design

- ① Dual-layer physical module
- ② Friendly user interface module
- ③ Hardware communication module
- 4 Database connection module
- **(5)** Client-Server development module
- 6 Various phyiscal algorithm toolkits

X. Lu et al., ICALEPCS2021, THPV047 X. Lu et al., IPAC2023, THPA125

Low-coupling dual-layer physical module

中国科学院高能物理研究所

Institute of High Energy Physics , Chinese Acedemy of Scienc

Not dependent on specific physical models, easy to extend

18

Real-time Data Interaction System

Combining the design philosophies of pydm and openxal, design the communication structure of pyapas (active and passive channel data acquisition)

The Channel class contains the EPICS communication interface responsible for specific communication with the IOC

学院高能物理研究所

- Combining PyQt's signal-slot mechanism to achieve efficient real-time interaction
- The 'Singleton Factory Pattern' centrally manages interaction channels in the program, avoiding redundant creation and improving interaction efficiency."

The channel factory has namespace functionality

	NodeName	xAvgChannel	Value	yAvgChannel	
1	R01BPM01	R:BI:R01BPM01:x	-0.00024846263641131787	R:BI:R01BPM01:y	0.0
2	R01BPM02	R:BI:R01BPM02:x	-0.0007405004049405429	R:BI:R01BPM02:y	0.0
3	R01BPM03	R:BI:R01BPM03:x	-0.0003863998687952148	R:BI:R01BPM03:y	0.0
4	R01BPM04	R:BI:R01BPM04:x	-5.57367509261469e-05	R:BI:R01BPM04:y	0.0
5	R01BPM05	R:BI:R01BPM05:x	0.00019363297907922127	R:BI:R01BPM05:y	0.0
6	R01BPM06	R:BI:R01BPM06:x	0.0003999152633156065	R:BI:R01BPM06:y	0.0
7	R01BPM07	R:BI:R01BPM07:x	-0.0002012937695207042	R:BI:R01BPM07:y	0.0
8	R01BPM08	R:BI:R01BPM08:x	-0.0003712213026685325	R:BI:R01BPM08:y	0.0
9	R01BPM09	R:BI:R01BPM09:x	0.0003782940324338285	R:BI:R01BPM09:y	0.0
10	R01BPM10	R:BI:R01BPM10:x	0.000246271410320288	R:BI:R01BPM10:y	0.0
11	R01BPM11	R:BI:R01BPM11:x	0.00023493524065263668	R:BI:R01BPM11:y	0.0
12	R01BPM12	R:BI:R01BPM12:x	-0.0004448539000907493	R:BI:R01BPM12:y	0.0
13	R02BPM01	R:BI:R02BPM01:x	-0.0008175793579582362	R:BI:R02BPM01:y	0.0
14	R02BPM02	R:BI:R02BPM02:x	-0.00023626437779320208	R:BI:R02BPM02:y	0.0
15	R02BPM03	R:BI:R02BPM03:x	7.631787448949901e-06	R:BI:R02BPM03:y	0.0
16	R02BPM04	R:BI:R02BPM04:x	0.000971139202285528	R:BI:R02BPM04:v	0.0

The same application can smoothly run while monitoring 10,000 PVs

中国科学院高能物理研究所

Institute of High Energy Physics , Chinese Acedemy of Sciences

Physical to Engineering Quantities Conversion System

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Acedemy of Sciences

Extend QtDesigner Customize widgets for HLA development

The main modules of Pyapas are essentially complete

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Acedemy of Sciences

The modules included in Pyapas basically meet all the requirements of HLA development for HEPS

> HLA development requirements of HEPS

> Pyapas for HLA development at HEPS

HLA development based on Pyapas

Conclusion

All the HLAs are developed based on Pyapas

Within the same network environment or on the same server, any number of virtual accelerators can be launched without conflicting with each other

Virtual Accelerator of HEPS Linac

- Single Particle Tracking
- Multi-Particle Tracking
- Vritual PR
- ➢ Full feature IOC
- Errors included

Generate 'real-time' data for testing HLAs

Part of HLAs for Linac

Linac control (Xiaohan Lu)

中国科学院高能物理研究所

Institute of High Energy Physics , Chinese Acedemy of Sciences

Emittance measurement (Yaliang Zhao)

Orbit correction (Cai Meng)

Energy spread measurement (Hongfei Ji) PR analysis tool (Xiaohan Lu)

BBA (Yaliang Zhao) File Accelerator Simulation View Window Help HOME bba1 bba2 • X · Y Quad LAQF3A - BPM LABPM5 deltaQ 5 T/m BPM average over: 5 Fit with: fit with averaged data -10 3 Corr LACH2 **☆ ← → | ⊕ Q ≑ 🗠** 🖺 BPM used All 3000 -Start add-point LABPM3 2500 2000 pause Stop LABPM4 1500 -LABPM5 1000 ✓ LABPM6 500 -The BPM offset is : 0.2964 mm ✓ LABPM7 LABPM8 -8 -6 -4 -2 Ó 2 4 6 bpm1(mm)

Part of HLAs for Booster and Storage Ring

RF [Hz]:

REfrequency

+485.80

Δt [s]: 3

0.00226

[0.20897607]

[0.00026537]

+0.00

Add

Re-plot

Stop

Continue

Dispersion measurement (Hongfei Ji) Chromaticity Measurement (Y. Wei)

File View Window Help

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Acedemy of Sciences

Local orbit correction (Y. Wei)

First turn data analysis (Daheng Ji)

Global orbit correction (Yaling Zhao)

Booster Control (Xiaohan Lu)

中國科學院為維約現研究所 Institute of Night Energy Physics, Chinese Accelemy of Sciences Pyapas in the Control Room

Pyapas has been successfully applied in beam commissioning of HEPS.

The practicality and reliability of *Pyapas* have been essentially verified

width: 1280 - Method: Gaussion Fit - Noise: 1D 0.6 V background CRotate Start save pic

	x		У		
View:	24.9344	mm	18.7008	mm	
Scale:	1,1		1,1		
Sigma:	3.469	mm	0.621	mm	ОК
Mean:	-1.622	mm	-2.048	mm	

Fit and Plot * < > + Q = Z B • meas 1.0 1.0 - fit 0.9 0.9 0.8 0.8 0.7 Ê 0.7), 6 O.G 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 step index EmitX(um) etaX(m 0 77 5.640e-02 +90.05 +0.00246 0 03164

HLA development requirements of HEPS

- > Pyapas for HLA development at HEPS
- > HLA development based on *Pyapas*
- Conclusion

Conclusion

- A brand-new framework, *Pyapas*, was developed based on Python to enhance the efficiency of HLA development.
- > A multi-user virtual accelerator was developed based on *Pyapas* for testing the HLA.
- > All the HLAs of HEPS were developed based on *Pyapas*
- We're looking to enhance Pyapas with more features and welcome interested colleagues to join us in its development

<u>https://code.ihep.ac.cn/heps-hla/pyapas.git</u> <u>luxh@ihep.ac.cn</u>

Thanks for your attention !