A Low-Loss 14 m Hard X-ray Bragg-reflecting Cavity, Experiments and Analysis A Low-Loss 14 m Hard
X-ray Bragg-reflecting
Cavity, Experiments
and Analysis
Rachel Margraf on behalf of:
River Robles, Alex Halavanau, Jacek Kryzywinski,
Kenan Li, James MacArthur, Taito Osaka, Anne
Sakdinawat, Takahiro S X-ray Bragg-reflecting

Cavity, Experiments

and Analysis

Rachel Margraf on behalf of:

River Robles, Alex Halavanau, Jacek Kryzywinski,

Kenan Li, James MacArthur, Taito Osaka, Anne

Sakdinawat, Takahiro Sato, Yanwen Sun

Rachel Margraf on behalf of:

River Robles, Alex Halavanau, Jacek Kryzywinski, Kenan Li, James MacArthur, Taito Osaka, Anne

ICFA Future Light Sources 2023 August 29, 2023

Cavity-Based FELs

(https://www.ru.nl/felix/about-felix/about-felix/fel-operating-principle/)

- FEL Oscillators (FELOs) widely used at Infrared Wavelengths
	- Optical properties well defined by cavity.
- Current X-ray FELs are single-pass, SASE machines
	- Transversely coherent, longitudinally chaotic
	- reflectivity mirrors.
- Cavity-based XFELs will extend oscillator schemes to X-ray regime.

Cavity-Based XFEL Installations at LCLS Cavity-Based XFEL Installations at LCLS
SLAC LDRD-Funded Cavity Ringdown Test
• 14 m X-ray "Cold Cavity" (no gain)
• Operated Feb-Apr 2022 in the LCLS XPP hutch

- 14 m X-ray "Cold Cavity" (no gain)
- Operated Feb-Apr 2022 in the LCLS XPP hutch $\frac{4 \times$ diamond

\rightarrow Focus of Today's talk!

The Optical Cavity-Based X-Ray Free-Electron Laser Project (CBXFEL) a collaboration between SLAC, Argonne and RIKEN. **r Project (CBXFEL)** a collaboration between
 \cdot , Argonne and RIKEN.

• 66 m 2-pass Gain test cavity, uses NC Accelerator

• To be installed in LCLS Hard X-ray Undulator Hall

within a year
 e-Scale CBXFEL to deliver X-

- 66 m 2-pass Gain test cavity, uses NC Accelerator
- To be installed in LCLS Hard X-ray Undulator Hall within a year

- Large-Scale CBXFEL to deliver X-rays to Users

 Use 8 GeV e⁻ at MHz repetition rate from

LCLS-II-HE to provide gain over many passes

 TBD lots of possibilities! Use 8 GeV e at MHz repetition rate from LCLS-II-HE to provide gain over many passes
	-

3 G. Marcus et al., Phys. Rev. Lett. 125, 254801 (2020) K.J. Kim et al., Proc. of IPAC2019, (2019)

Cavity-Based XFEL Installations at LCLS

- 14 m X-ray "Cold Cavity" (no gain)
- Operated Feb-Apr 2022 in the LCLS XPP hutch $\frac{4X\text{ diamond}}{B\text{C}qg}$

AC LDRD-Funded Cavity Ringdown Test

→ 14 m X-ray "Cold Cavity" (no gain)

→ Operated Feb-Apr 2022 in the LCLS XPP hutch

→ First step – build a cavity suitable for a CBXFEL.

What type of cavity do we need? What type of cavity do we need?

Cavity-Based XFEL Cavity Requirements vity-Based XFEL Cavity Requirement

ragg-Reflecting Cavity

• High angle, high reflectivity, narrow bandwidth mirrors

igh Thermal Load Tolerance

• Influences crystal choice – eg. Diamond better

dissipation than Silicon

- Bragg-Reflecting Cavity
	- High angle, high reflectivity, narrow bandwidth mirrors
- High Thermal Load Tolerance
	- dissipation than Silicon
- Large (10-200 m) Stable Cavity
	- Set by round trip time of MHz electron beam
	- Challenging Alignment
- Crystals need to be independently actuated with angular precision and stability much better than beam divergence $(\sim 2 \mu \text{rad})$ and width of the Bragg curve (eg. 8.8 µrad FWHM diamond 400 @ 9.83 keV) Friend Load Tolerance

• Influences crystal choice – eg. Diamond better

dissipation than Silicon
 arge (10-200 m) Stable Cavity

• Set by round trip time of MHz electron beam

• Challenging Alignment

• Crystals need t
	-
- Out-coupling Capable
	- Needs to deliver high power X-rays to the end user

Past Bragg-Reflecting X-ray Cavities

Small-scale, utilizing Si or Sapphire. Want to test K.-D. Liss et al., Nature, vol. 404, no. 6776, a large-scale (10s of m) diamond cavity.

pp. 371–373, (2000). Color figs from: Liss et al., Proc. SPIE 4143, (2000)

25

Stage 0: 14 m Cavity at LCLS XPP

Bragg-Reflecting Diamond Mirrors Bragg-Reflecting Diamond Mirror:

HPHT Type IIa Diamond

+ High Reflectivity

+ High Thermal Diffusivity
 $_{0.8}$ **Bragg-Reflecting Diam

HPHT Type IIa Diamond**

+ High Reflectivity

+ High Thermal Diffusivity

- Perfect crystals less available than Bragg-Reflecting Diamon
 HPHT Type IIa Diamond

+ High Reflectivity

+ High Thermal Diffusivity

- Perfect crystals less available than

Silicon Bragg-Reflecting Diamor

HPHT Type IIa Diamond

+ High Reflectivity

+ High Thermal Diffusivity

- Perfect crystals less available than

Silicon

-
-
- Silicon

Y. Shvyd'ko, et al., Nature Photonics 5, 539 (2011)

Example 4-bounce Options

Crystals grown by Sumitomo Electric, ϵ characterized ϵ at SSRL, APS and SPring-8

R.C. Burns et al., J. Phys.: Condens. Matter, 21, 364224, (2009)

H. Sumiya, K. Harano, and K. Tamasaku, Diamond and Related Materials, vol. 58, 221–225, (2015)

P. Pradhan, et al., J. Synchrotron Rad. 27, 1553 (2020)

Cavity Alignment Mechanics

For Diamond Positioning and Orientation

Stage 0 Cavity

Off-the-Shelf Solution for Stage 0 (X-rays Only) \rightarrow 1-10 µrad alignment precision

Kohzu (RA10A-W, Axis ∥ cavity plane)

Attocube (ECR5050hs, Axis \perp cavity plane) Step: 1 μ degree (~20 nrad) Angular Repeatability: 2 mdeg (55 µrad)
 Attocube (ECR5050hs, Axis \perp cavity plane)

Step: 1 µdegree (~20 nrad)

Short Term Angular Repeatability: 2 mdeg (35 µrad)

Short Term Angular Repeatability: 2 mdeg (35 µrad)

Need higher precision for even larger cavities:

Custom Flexure Stages for Stage 1,

(Full 2-pass gain Experiment) \rightarrow 10s of nrad alignment precision

Axes \parallel and \perp cavity plane: Step: ~1 µdegree (20 nrad)

D. Shu et al, MEDSI2020. D. Shu et al, SRI2021

Outcoupling Methods

• Grating Beamsplitter

Outcoupling Methods

• Thin (Drumhead) Crystal

There are many additional outcoupling methods being studied!

J. Krzywiński et al., Proc. FEL'19, 122- 125, (2019) R. Margraf et al., Proc. IPAC'22, (2022)

Kolodziej, et al. (2016) J. Appl. Cryst., 49: 1240-1244

• Chirped E-Beam Q -Switching
 λ_r $Q \lambda_{\text{FEL}} = \lambda_{\mu B} = \frac{\lambda_r}{1 + h R_{56}}$ Bragg window spectral intensity photon energy

J. Tang et al., Phys. Rev. Lett., vol. 131, no. 5, p. 055001, (2023)

• Mirror with Pinhole

H.P. Freund, P. van der Slot, and Y. Shvyd'ko, arXiv:1905.06279, (2019)

… & Strong Taper

G. Marcus et al., Phys. Rev. Lett. 125, 254801 (2020)

Bragg Q-Switching • Chirped E-Beam • Microbunch Rotation

11 J. P. MacArthur, et al., Phys. Rev. X, 8, 4, 41036, (2018) R. Margraf et al., Proc. FEL'22, (2022)

Cavity Ringdown

R. Margraf et al., Nat. Photonics, (2023)

>96% efficiency if remove loss from in-coupling grating and lens!

Transverse Oscillations

R. Margraf et al., Nat. Photonics, (2023)

Y Plane (Out of the Plane of the Cavity): With Focusing, Beam Oscillates

X Plane (In the Plane of the Cavity): Less Oscillation due to Angular Filtering

Next, we will apply this experience to building
cavities with gain!
SLAC LDRD-Funded Cavity Ringdown Test
• Demonstrated Cavity Ring-down and Stability
• Tested Diagnostics. Grating Out-Coupling. Next, we will apply this experience to building cavities with gain!

- Demonstrated Cavity Ring-down and Stability
- Tested Diagnostics, Grating Out-Coupling, Focusing and Alignment Techniques

The Optical Cavity-Based X-Ray Free-Electron Laser Project (CBXFEL) a collaboration between SLAC, Argonne and RIKEN. **Project (CBXFEL)** a collaboration between
 c, Argonne and RIKEN.

• 66 m 2-pass Gain Test-Bed cavity

• To be installed in LCLS-II HXU within a year
 e-Scale CBXFEL to deliver X-rays to Users

• Use 8 GeV e⁻ at MHz

- 66 m 2-pass Gain Test-Bed cavity
- To be installed in LCLS-II HXU within a year $\frac{1}{\sqrt{c}}$

- Large-Scale CBXFEL to deliver X-rays to Users

 Use 8 GeV e⁻ at MHz repetition rate from

LCLS-II-HE to provide gain over many passes

 TBD lots of possibilities! Use 8 GeV e at MHz repetition rate from LCLS-II-HE to provide gain over many passes
	-

14 G. Marcus et al., Phys. Rev. Lett. 125, 254801 (2020) K.J. Kim et al., Proc. of IPAC2019, (2019)

Acknowledgements

Thanks to our sponsors for the strong support!

And to our CBXFEL Collaboration Argo

K. Tamasaku bi Kecamental K. Tamasaku K. K. Kim T. Osaka

B. Lantz

SLAC Laboratory Directed Research and Development (LDRD) Program

J. Andrist J. Anton \overrightarrow{A} . Miceli \overrightarrow{F} A. Bernhard J. Moczarny J. Build L. Cokeley J. Park Fire L. Gassner J. Gagliano X. Shi alaxanay K. Goetze K. Jacinowski W. Jansma S. Kearney K. Kauchha **D.** Walco **B. Lam**
K. Kauchha **D. Walco** Y. Liu K. Lang Y. Li R. Lindberg M. Martens

S. Mashrafi J. Delong
Y. Ding J. Moczarny J. Park X. Shi S. Sorsher E. Hemsing J. P. Sullivan J. Trosen D. Walco W. Ward M. White

L. Assoufid W. Michalek $\frac{1}{L}$ Decker X. Huang Y. Shvyd'ko J. Hastings K.-J. Kim K. Wakefield B. Kingwinski P. Liu K. Wood J. Marinelli D. Shu C. Curtis F.-J. Decker J. Duris J. Hastings Z. Huang G. Kraft J. Krzywinski A. Lutman J. MacArthur A. Marinelli D. Martínez-Galarce J. Mock

A. Montironi

15 J. Delong R. Margraf Y. Ding J. Welch Y. Feng H.D. Nuhn G. L. Gassner X. Permanyer A. Halavanau T. Raubenheimer E. Hemsing A Sakdinawat B. Lam J. Tang Y. Liu H. Wang D. Nguyen Y. Nosochkov R. Robles S. Saraf T. Sato T. Tan J. Welch M. Woodley J. Wu L. Zhang 15 D. Zhu

Questions?

Lots of Detail on Cavity-Based XFELs, and X-ray Laser Oscillators in other Presentations!

16 Tuesday: 4:30 pm, Kwang-Je Kim, TU4P14 (poster) Cavity-based XFEL R&D Project Wednesday: Tuesday:
4:30 pm, Kwang-Je Kim, TU4P14 (poster)
Cavity-based XFEL R&D Project
Wednesday:
9:00 am, Zhirong Huang, WE1L2
Progress of Cavity-based X-ray
Free-electron Lasers Progress of Cavity-based X-ray Free-electron Lasers 11:00 am, Kwang-Je Kim, WE2A1 Modified Maxwell-Bloch Equations for X-ray Amplified Spontaneous Emission in X-ray Lasers 1.50 pm, Kwang-je Kim, 1041 14 (poster)

Cavity-based XFEL R&D Project

Wednesday:

9:00 am, Zhirong Huang, WE1L2

Progress of Cavity-based X-ray

Free-electron Lasers

11:00 am, Kwang-je Kim, WE2A1

Modified Maxwell-Bloch Population Inversion X-ray Laser Oscillator at LCLS and LCLS-II Thursday: 3:00 pm, Kwang-Je Kim, TH3B3 Transverse Gradient Undulator for a Storage Ring X-Ray Free-Electron Laser Oscillator Equations for A-ray Empirical
Spontaneous Emission in X-ray
Lasers
11:00 am, Aliaksei Halavanau, WE2C1
Population Inversion X-ray Laser
Oscillator at LCLS and LCLS-II
Thursday:
3:00 pm, Kwang-Je Kim, TH3B3
Transverse Gradi An Active Q-switched X-ray Regenerative Amplifier Freeelectron Lasers