CXFEL Project

William Graves

Biodesign Institute and CISA Arizona State University

Arizona State University

67th ICFA

Future Light Advanced Sources Workshop FLS 2023 2023

> 28 August – 1 September 2023 **Swiss Museum of Transport** Lucerne, Switzerland

www.fls23.ch

CXFEL Project – What is it?

A two-phase project to build a compact fully coherent x-ray laser

CXLS

Phase 1 Hard X-ray ICS Source

CXFEL

Phase 2 Soft X-ray Coherent Laser

CXFEL includes 80+ People in 16 Institutions

Biochem

Fromme, Petra (Science Dir) Botha, Sabine Brown, Michael (U AZ) Frank, Matthias (UC Davis) Fung, Russell (UW-Mil) Grant, Tom (U. Buff.) Kirian, Rick Kuhl, Tonya (UC Davis) Lattman, Eaton Liu, Wei Ourmazd, Abbas (UW-Mil) Phillips, George (Rice) Ros, Alexandra Schmidt, Kevin Schmidt, Marius (UW-Mil) Schwander, Peter (UW-Mil) Weierstall, Uwe

Quantum Materials

Teitelbaum, Sam (QM lead) Kaindl, Robert (CXFEL Lab Dir) Tongay, Sefaatin Abbamonte, Peter (UIUC) Botana, Antia Comin, Riccardo (MIT) Chuang, Yi-De (LBL) Erten, Onur Gedik, Nuh (MIT) Mahmood, Fahad (UIUC) Mitrano, Matteo (Harvard) Reis, David (Stanford) Roy, Sujoy (LBL) Trigo, Mariano (SLAC)

Attosecond AMO

Sandhu, Arvinder (U AZ, AMO lead)

Berrah, Nora (UConn) Centurion, Martin (U Neb) Cryan, James (SLAC) DiMauro, Louis (OSU) Gessner, Oliver (LBL) Nelson, Keith (MIT) Rolles, Daniel (KSU) Rudenko, Artem (KSU) Shivaram, Niranjan (Purdue) Weber, Thorsten (LBL)

Management

Winkel, David (Prog Mgr) Clark, Deanna Cottrell, Erica Reichanadter, Mark

Instrument

Graves, William (Proj Dir) Dolgashev, Valery (SLAC) Karkare, Siddharth Li, Zenghai (SLAC) Loos, Henrik Malin, Lucas Nanni, Emilio (SLAC) Qiang, Ji (LBL) Tantawi, Sami (SLAC) Thornton, Trevor Tilton, Sean

Engineering

Holl, Mark (Chief Eng) Brown, Paul (MIT) Cook, Brandon Gardeck, Alex Houkal, Jeff Jachim, Steven Liebich, Brett Ness, Richard Rednour, Steven Smith, Dean Vela, Juan

Undergrad Education

Warble, Kelli (Lead) Babic, Gregory Bell, Christina Boyd, Elena Brown, Taryn Dela Rosa, Trixia DeMott, Ross Dupre, Alan Eckrosh, Kevin Everett, Eric Eyler, Aaron Falconer, Jasmin Jaswal, Rejul Larsen, Rae Leonard, Nicholas Ma, Xinyi Martinez, Anastasia Ros, Elena Semaan, Antonella Staletovic, Anastasia Stanton, Jade Tripathi, Shreva Valentin, Dariannette 3

CXFEL Labs

- 2 m thick slab separate from building
- Vibration rated VC-E (TEM quality)
- 0.25 0.5 C temperature stability
- Class 100k clean conditions or better
- Low background B-fields
- Faraday cage RF room

The CXFEL Project includes two lab spaces for independent instruments

- Hard x-ray CXLS is commissioning; prototype of CXFEL technologies
- CXFEL under construction

Construction Complete and now Commissioning First x-rays February 2023

CXLS Hard X-ray Design Parameters

Parameter	0.1%	5%	Units
	Bandwidth	Bandwidth	
Photon energy range	2 - 20	2 - 20	keV
Average flux	5x10 ⁹	1x10 ¹¹	photons/s
Average brilliance	$2x10^{12}$	5x10 ¹²	photons/(s .1% mm ² mrad ²)
Peak brilliance	3x10 ¹⁹	9x10 ¹⁸	photons/(s .1% mm ² mrad ²)
RMS horizontal size	3.0	3.0	microns
RMS vertical size	3.0	3.0	microns
RMS horizontal angle	4.0	4.0	mrad
RMS vertical angle	4.0	4.0	mrad
Photons per pulse	5x10 ⁶	1x10 ⁸	
RMS pulse length	<500	<500	fs
RMS timing jitter	<50	<50	fs
Repetition rate	1000	1000	Hz

Initial experiments produce ~3e5 15 keV photons/shot at 1 kHz operating at 80 mJ ICS laser energy and Q = 20 pC

ICS Laser Test Results

ICS laser Trumpf Dira 200-1 1030 nm Yb:YAG thin disk regen 200 mJ at 1000 Hz 1.1 ps FWHM

RF Performance

Stellant L-6145 klystrons 6 MW, 700 ns, 1 kHz 59 dB small signal gain

Scandinova K1 modulator 130 kV, 98 A, 2.5 us, 1 kHz

RMS jitter 100 ppm over 10k shots

- V. Dolgashev (SLAC) RF design
- Mode converter with quad RF feeds
- 4.5 cells
- 9.3 GHz RF
- 3 MW peak power
- 4 MeV final energy
- 120 MV/m on cathode
- 1 kHz repetition rate
- Embedded in tape-wound solenoid

	<u>Typical ops</u>				
	2.9 MW				
	3.8 MeV				
5	114 MV/m				

XFEI

9.3 GHz Distributed-Coupling SW Linac

Tantawi and Li (SLAC and Tibaray)

- 9.3 GHz 20-cell structure, 35 cm long
- 30 MV/m gradient for 2 MW input
- 165 MOhm/m shunt impedance
- 170 ns fill time
- 3 mm apertures
- E_{surface} to E_{accel} = 4:1
- 1 kHz rep rate
- Distributed coupling to each cell
- Inexpensive

Linac Performance

- ➢ 32 MV/m gradient
- > 128 MV/m surface field
- > 1000 Hz rep rate
- > 700 ns RF pulse
- 2 MW delivered to each structure
- ~10 pC per 700 ns RF pulse dark current
- 30 MeV final beam energy (still tuning)
- RMS dE/E = 50-200 ppm

5 year \$91M construction award from NSF Bio Directorate March 2023

Category (incl equipment and labor)	Cost (\$)
Accelerator	\$10,653,387
Lasers	\$20,128,396
Science Endstations	\$17,255,770
X-ray Systems	\$3,487,768
Facilities and Engineering	\$13,895,913
Validation of Operational Capability	\$5,355,435
Project Management	\$6,621,953
Sub total	\$77,398,622
Contingency	\$13,401,378
Total Project Cost	\$90,800,000

CXFEL Soft X-ray Parameters

Photon energy	250	1000	2500	eV
X-ray wavelength	4.9	1.2	0.49	nm
Average flux at 1 kHz	8.0E+11	1.1E+11	4.4E+10	photons/sec
Average brilliance	1.3E+15	1.2E+16	7.3E+16	ph/s/mm^2/mrad^2
Peak brilliance	1.2E+28	5.6E+28	1.4E+29	ph/s/mm^2/mrad^2
RMS source size	0.9	0.5	0.3	um
RMS source divergence	440	188	117	urad
X-ray flux per shot - energy	32	18	18	nJ
Photons per pulse	8.0E+08	1.1E+08	4.4E+07	Photons/shot
Pulse length FWHM	9.1	4.6	1.9	fs
Bandwidth FWHM	0.18	0.09	0.08	%
RMS timing jitter	<10	<10	<10	fs
Repetition rate	1000	1000	1000	Hz
Electron beam energy	14	29	46	MeV

CXFEL Ultrafast Science

Bio: Study the dynamics of structural, electronic and oxidation changes **Discover** Photosynthetic processes cover time scales from light capture (as) to water splitting (ms) O₂ + 4e⁻ + 4H⁺ 2H,0 -X-ray diffraction: **Optical spectroscopy:** X-ray spectroscopy: Structural dynamics Electronic dynamics **Oxidation state dynamics**

Arizona State University

AMO: Track electronic wavepackets through conical intersections of molecules

QM: Manipulate and track coherences in correlated electron materials

ICS Laser for CXFEL - ASU

Courtesy of Gaia Barbiero | TRUMPF Scientific Lasers

Based on

European Commission Laser Lighting

Rod Project

CXFEL Accelerator Layout

Arizona State University

Summary

- CXFEL is a 2-stage project involving 80 researchers at 12 institutions
 - Stage 1 CXLS hard x-ray source is complete and now commissioning.
 - Stage 2 CXFEL has just begun construction.
- Initial CXLS performance is very stable. Now increasing charge to reach full flux. User operations start 2024.
- CXFEL coherent soft x-ray source construction over next 5 years. Technologies closely based on CXLS with addition of electron diffraction and emittance exchange to produce nanobunched ebeam.
- We are hiring scientists and engineers (and students!) in laser, accelerator, and x-ray science. Positions available from postdocs to the most senior scientists. Please contact me at wsg@asu.edu for more information.

