

Evolution of the Inverse Compton Scattering X-ray Source of the ELSA Accelerator (CEA DAM, France)

Working group : Compact Light Sources

Abel PIRES (CEA DAM, LMCE)

V. LE FLANCHEC R. ROSCH J. TOUGUET (CEA DAM, LMCE) - N. DELERUE (IJCLab, CNRS)

67th ICFA Advanced Beam Dynamics Workshop on Future Light Sources: FLS 2023 27 August 2023 to 1 September 2023 Verkehrshaus Luzern

- **1.** Introduction
- **2. ELSA Accelerator**
- **3.** The Inverse Compton X-ray Source at ELSA
- **4.** Strategy for Source Optimization
- **5.** Conclusion

Introduction

Inverse Compton X-ray Source Inverse Compton X-ray Source

Monochromatic and directional radiation sources with high temporal resolution

 Compact sources for imaging or diagnostic characterization eg., ELSA (versatile : pulsed single shot - recurrent)
> 532 nm laser (E_p = 2,3 eV) + relativistic electrons (E_e = 18 MeV) → X-ray photons E_X = 12 keV
eg., THOMX (recurrent)
> 1030 nm laser (E_p = 1 eV) + relativistic electrons (E_e = 50 MeV) → X-ray photons E_X = 45 keV

 Very high-energy X-ray sources for high-energy physics eg., Laser Electron Photon beamline at SPring-8 (LEPS)
> 351 nm laser (E_p = 3,5 eV) + relativistic electrons (E_e = 8 GeV) → X-ray photons E_X = 2,9 GeV

$$\mathbf{E}_X(\mathbf{\theta}_2=\mathbf{0})=4\gamma^2 E_p$$

Inverse Compton X-ray Source

<u>Storage Ring-Based Inverse Compton X-ray Sources</u> <u>Cavity Design, Beamline Development and X-ray Applications</u> Author: Benedikt Sebastian Günther

https://doi.org/10.1007/978-3-031-17742-2

2 ELSA Accelerator

(CEA DAM, France)

ELSA Accelerator (CEA DAM, France)

3D view

Typical bunch charge : 0.1 - 3 nCBunch duration : 15 - 100 ps1 - 10000 bunches per train (1 - 5 Hz)Emittance : $2 - 30 \mu \text{m}$

3 The Inverse Compton X-ray Source at ELSA

The Inverse Compton X-ray Source at ELSA

Top view of the interaction point

The Inverse Compton X-ray Source at ELSA 3D view of the interaction point and SMILE device

SMILE :

View of the laser impacting the mirrors surfaces

The Inverse Compton X-ray Source at ELSA Schematic of SMILE

View of the laser impacting the mirrors surfaces

Counterintuitiveto use a multipass system for a single shot interaction(Primary use of ELSA Compton source)29/08/202312

<u>cea</u>

The Inverse Compton X-ray Source at ELSA Optomechanical design for high angular precision

25 cm

The Inverse Compton X-ray Source at ELSA Optomechanical design for high angular precision

The Inverse Compton X-ray Source at ELSA First Experimental results in 2010 (without SMILE)

Sans laser (Bruit de Fond)

Avec laser (10 keV + BdF)

<u>"Instrumentation developments for production and</u> <u>characterisation of Inverse Compton Scattering X-rays</u> <u>and first results with a 17 MeV electron beam, "</u> Nucl. Instrum. Meth. A, vol. 622, pp. 129-135, 2010, Author : Anne-Sophie Chauchat https://doi.org/10.1016/j.nima.2010.07.034

<u>Étude de la production de ayonnement X par</u> <u>diffusion Compton sur l'installation ELSA</u> Author : Anne-Sophie Chauchat

https://theses.hal.science/tel-00652588

2011 experiments	17 MeV		
Electron beam			
Kinetic Energy (MeV)	17		
Bunch Charge (pC)	200		
Emittance (µm H-V)			
rms spot size (µm H-V)	100 - 80		
Bunch duration (ps)	30		
Laser beam			
Wavelength (nm)	532		
Pulse energy (mJ)	0,2		
rms spot size (µm H-V)	40 - 65		
Pulse duration (ps)	30		
X-rays			
Energy (keV)	11		
Half angle of radiation (mrad)	10 (30)		
Nb of photons per bunch	2,3 (3,7)		
Peak photon flux (ph/s)	7,6 10 ¹⁰ (1,2 10 ¹¹)		
Average flux (ph/s)	3,4 10 ³ (5,4 10 ³)		

The Inverse Compton X-ray Source at ELSA

Experimental results in 2016

With 17,7 MeV and 30 MeV electrons

2016 experiments	17.7 MeV	30 MeV	
Electron beam			
Kinetic Energy (MeV)	17.7	30	
Bunch Charge (pC)	400	400	
Emittance (µm H-V)	7.8 - 18.9	21 - 45	
rms spot size (µm H-V)	105 - 73	125 - 180	
Bunch duration FWHM (ps)	34	25	
Laser beam			
Wavelength (nm)	532	532	
Pulse energy (mJ)	2 (0,25 without SMILE)	2 (0,25 without SMILE)	
rms spot size (µm H-V)	84 - 64	79-101	
Pulse duration FWHM (ps)	34	25	
X-rays			
Energy (keV)	12	33	
Half angle of radiation (mrad)	10 (24)	10 (13)	
Nb of photons per bunch	110 (340)	293 (908)	
Peak photon flux (ph/s)	3,2 10 ¹² (1 10 ¹³)	1,2 10 ¹³ (3,6 10 ¹³)	
Average flux (ph/s)	2,9 10 ⁴ (8,8 10 ⁴)	2,0 104 (6,2 104)	

<u>"Inverse Compton scattering X-ray source yield optimization with a</u> <u>laser path folding system inserted in a pre-existent RF linac,"</u> Nucl. Instrum. Meth. A, vol. 840, pp. 113-120, 2016, Author : Annaïg Chaleil

https://doi.org/10.1016/j.nima.2016.10.008

Développement d'une source de rayonnement X par diffusion Compton inverse sur l'accélérateur ELSA et optimisation à l'aide d'un système d'empilement de Photons Author : Annaïg Chaleil

https://hal.science/tel-01435076/

16

\bel Pires

Summary

Solutions : **Pitfalls**: **Beams alignment** Interaction **Re-design the interaction Mechanical stability** area (SMILE 2) area Using the laser at 1064nm **Efficiency of frequency doubling** instead of 532nm with a remote alignment method Laser **Laser Induced Damage Threshold** (LIDT) Temporal stretching by CPA Non-linear effects (Chirped Pulse Amplification) Twiss parameters and charge **Space charge effects** that maximize X-ray yield **Bunch duration** Using a decelerating 1.3 GHz cavity to **Electrons** achieve linear chirp before compression **Bunch energy** Upgrading the 1.3 GHz cavity and Klystron system Abel Pires

Summary

Pitfalls: Solutions : **Beams alignment Re-design the interaction Mechanical stability** area (SMILE 2) Using the laser at 1064nm **Efficiency of frequency doubling** instead of 532nm with a remote alignment method Laser Induced Damage Threshold **Temporal stretching by CPA** Non-linear effects (Chirped Pulse Amplification) **Space charge effects** that maximize X-ray yield Using a decelerating 1.3 GHz cavity to **Electrons** Upgrading the 1.3 GHz cavity and Klystron system

Pitfalls:

Summary

Solutions :

Strategy for Source Optimization Re-design of the interaction area (SMILE 2)

Re-design of the interaction area (SMILE 2)

SMILE 2 :

- motorization with piezo actuator = fine thread screw driven by a piezo or manually
- new design of the laser entrance mirror system :
 - →<u>No mechanical link</u> with the external structure

Strategy for Source Optimization Re-design the interaction area (SMILE 2)

SMILE

SMILE 2: operational

Summary

Cea Abel Pi

Using the laser at 1064nm with a remote alignment method

Using the laser at 1064nm with a remote alignment method

Strategy for Source Optimization Using the laser at 1064nm with a remote alignment method

Without laser beam

Camera 1 looking at mirrors of plate 1

Camera 2 looking at mirrors of plate 2

Strategy for Source Optimization Using the laser at 1064nm with a remote alignment method

With laser beam

Camera 1 looking at mirrors of plate 1

Camera 2 looking at mirrors of plate 2

Using the laser at 1064nm with a remote alignment method

Pitfalls:

Summary

Solutions

Temporal stretching by CPA (Chirped Pulse Amplification)

- Pitfalls : Laser Induced Damage Threshold (LIDT)
 - Non-linear effects

Specificity:

- Nd:YAG at 1.064 µm, bandwidth: 250 pm
- (very narrow bandwidth for CPA)
- high line density (1850 l/mm),
- high laser resistance
- high efficiency (> 96%)
- angle of incidence = 78°
- 2° apart from the Littrow angle to enhance dispersion
- distance between gratings = 1.7 m

Status :

System designed and delivered properly, started alignement in August

Temporal stretching by CPA (Chirped Pulse Amplification)

Temporal stretching by CPA (Chirped Pulse Amplification)

SEM imaging

(credit : Plymouth Grating Laboratory)

Strategy for Source Optimization Optimization for single shot and recurrent mode

	2016		Upgrade	
Electron beam				
Kinetic Energy (MeV)		30	7	\bigcirc
Bunch Charge (pC)	400		7	\bigcirc
Emittance (µm H-V)	21 - 45		Ы	\bigcirc
rms spot size (µm H-V)	125 - 180		И	Ō
Bunch duration FWHM (ps)		25	Ы	Ō
Laser beam				
Wavelength (nm)	5	532	532 or 1064	\bigcirc
Pulse energy (mJ)	2 (0.25 wit	hout SMILE)	777	
rms spot size (µm H-V)	79	-101	И	$\overline{\mathbf{A}}$
Pulse duration FWHM (ps)		25	И	\bigcirc
X-rays				
Energy (keV)		33	larger range	$\bigcirc \bigcirc$
Half angle of radiation (mrad)	10	(13)	И	\bigcirc
Nb of photons per bunch	293	(908)	7777	$\bigcirc \bigcirc $
Peak photon flux (ph/s)	2.3 10 ¹³	(7.1 10 ¹³)	777777	\mathbf{O}
Peak surface photon flux (ph/s/cm ²) (detector located at 800mm)				
Average flux (ph/s)	2.0 10 ⁴	(6.2 104)	7777	$\bigcirc \bigcirc $

Expectations :

- Very high yield increase for single shot mode
- Abel Pires High yield increase recurrent mode

	Re-design the interaction area (SMILE 2)
	Using the laser at 1064nm instead of 532nm with a remote alignment method
\bigcirc	Temporal stretching by CPA (Chirped Pulse Amplification)
0	Twiss parameters and charge that maximize X-ray yield
0	Using a decelerating 1.3 GHz cavity to achieve linear chirp before compression
0	Upgrading the 1.3 GHz cavity and Klystron system

Conclusion - Prospect

Work under progress (related to this presentation) :

- CPA System parts received alignment in progress right now. Tests scheduled sept-oct 2023 (lab)
- Finalization of the alignment system before : nov 2023 (lab).
- Relocation of the whole system on ELSA : nov 2023.
 - Compton source experiments on ELSA : dec 2023 Feb 2024

Other works in progress :

• Simulation, Twiss paramater optimization (see IPAC23 Proceedings

https://doi.org/10.18429/JACoW-IPAC2023-TUPL172)

• Field linearizer for bunch compression improvement : new cavity installed 07/23. Still in test.

Long term prospect :

- Automatization of SMILE alignment
- Studies under way for an upgrade, including new 1.3 GHz cavity/klystron/modulator.

THANK YOU

Special thanks to :

Jules AMICO Anne-Sophie CHAUCHAT Martin COLLET Vincent JACOB Vincent LE FLANCHEC Jonathan RIFFAUD Rudolf ROSCH Jérome TOUGUET (CEA DAM, LMCE) Nicolas DELERUE (IJCLab, CNRS)

Abel Pires :

Vincent LE FLANCHEC :

<u>abel.pires@cea.fr</u>

vincent.le-flanchec@cea.fr