

An Efficient Optimization of a Burst Mode-operated Fabry Perot Cavity for Compton Light sources

Vlad Muşat, Andrea Latina, Eduardo Granados (CERN), Eric Cormier, Giorgio Santarelli (LP2N)

29/08/2023

Contents

- 1. Theoretical background
- 2. Burst mode parameters of the Fabry-Perot cavity
- 3. Geometry of the Fabry-Perot cavity
- 4. Impact of thermal effects
- 5. Example case: HPCI Compton Light source

Inverse Compton Scattering

= The scattering of a low energy photon from an EM field to a high-energy photon (X-ray or gamma ray) during the interaction with a charged particle.

One of the few compact light sources capable of generating MeV photons with a small energy bandwidth.

e⁻ IP
$$\phi$$

 ϕ
 θ
X-ray

$$N_{\gamma} = \sigma_{c} \frac{N_{e} N_{laser} \cos(\phi/2)}{2\pi \sigma_{\gamma,y} \sqrt{\sigma_{\gamma,x}^{2} \cos^{2}(\phi/2) + \sigma_{\gamma,z}^{2} \sin^{2}(\phi/2)}} \qquad \qquad \mathcal{B} = \frac{\mathcal{F}}{4\pi^{2} \sigma_{\gamma,x} \sqrt{\epsilon_{x}/\beta_{x}} \sigma_{\gamma,y} \sqrt{\epsilon_{y}/\beta_{y}}} \\ \frac{\mathbf{Total flux}}{\mathbf{Total flux}} \qquad \qquad \mathbf{Average brilliance} \\ \frac{\sigma_{E_{\gamma}}}{E_{\gamma}} = \sqrt{\left(\frac{\sigma_{E_{\theta}}}{E_{\theta}}\right)^{2} + \left(2\frac{\sigma_{E_{e}}}{E_{e}}\right)^{2} + \left(\frac{\sigma_{E_{laser}}}{E_{laser}}\right)^{2} + \left(\frac{\sigma_{E_{e}}}{E_{\epsilon}}\right)^{2}} \qquad \qquad E_{X-ray} = 2\gamma^{2} E_{laser} \frac{1 + \cos \phi}{1 + \gamma^{2} \theta^{2}} \\ \mathbf{Photon bandwidth} \qquad \qquad \mathbf{Photon energy} \end{cases}$$

How to maximise the photon flux?

Why burst mode operation?

The burst mode operation of a Fabry-Perot cavity:

- 1. Has a temporal pattern of the laser pulses similar to the incoming electron train.
- 2. The effective gain is 2 to 3 orders of magnitude larger than for the continuous wave mode.
- 3. Due to the lower intracavity average power, thermal effects on the cavity mirrors are minimised.

- A planar bowtie cavity was chosen, providing good stability of the resonator modes.
- The electron train interacts with the intracavity laser beam with a crossing angle ϕ .

Why burst mode operation?

2d1 P Ol Isser

Maximisation of the number of laser photons for the interaction

Optimisation of the burst mode parameters

Minimisation of the laser waist size at the IP & maximisation of the macropulse energy

Optimisation of the geometrical parameters

Burst mode optimisation

Burst mode FPC optimisation

The laser circulating power determines the effective energy

 $\mathcal{E}_{tot} = \epsilon (N_p, N_0, N_e, F) N_p \mathcal{E}_0$

- Flux increases linearly with \mathcal{E}_{tot} .
- $N_p \mathcal{E}_0 = U$ is limited by the FPC geometry (mirror LIDT).
- Input: the number of electron bunches per train
- A large finesse (*F*) allows for more laser pulses to be stored in the cavity \rightarrow larger \mathcal{E}_{tot} .
- High finesse cavities (e.g., *F* > 10000), require precise laser matching and mirror tuning → restrict the maximum finesse to 1000.

Optimisation strategy: burst mode parameters Previous study $\mathcal{E}_{tot} = \epsilon(N_n, N_0, N_e, F) N_n \mathcal{E}_0$

Previous study: Aurélien Martens,

Optimisation strategy: burst mode parameters <u>**Current study</u></u> \mathcal{E}_{tot} = \epsilon(N_p, N_0, N_e, F) N_p \mathcal{E}_0</u>**

The previous study presents some issues:

- 1. The ϵ was maximised by tuning N_p , N_0 , and F, although there is a missing N_p term.
- 2. The \mathcal{E}_0 is treated as a free variable, although it is fixed by the input laser.
- 3. The maximisation of ϵ does not correspond to a global maximum of \mathcal{E}_{tot} .

Parametric scans of the effective energy and the effective gain $\mathcal{E}_{tot} = \epsilon(N_p, N_0, N_e, F) N_p \mathcal{E}_0$

- For any *F*, *ε* has a local maximum.
- However, \mathcal{E}_{tot} continues to increases past the point of maximum ϵ .
- The optimisation of the burst mode parameters should maximise \mathcal{E}_{tot} directly.

Input: $\mathcal{E}_0 = 10 \ \mu J$; $N_e = 1000$

Parametric scans of the effective energy and the
effective gainBy choosing the max \mathcal{E}_{tot} instead of the max ϵ ,

a 40% increase in the effective energy is obtained.

Geometry optimisation

Inputs and requirements

- To maximise flux, Fabry-Perot cavities require a small waist size at the IP, and a large macropulse energy.
- The only input is the cavity round-trip length (set to a harmonic of the laser pulse repetition rate / electron bunch spacing).
- The previous study used a Monte-Carlo technique for the optimisation; we used the simplex algorithm → four orders of magnitude faster convergence.

Parameter	Symbol	Unit
Roundtrip length	L _{RT}	cm
Cavity height	h	cm
Distance between spherical mirrors	$2d_1$	cm
Distance between planar mirrors	$2d_2$	cm
Radius of curvature	R	cm
Mirror diameter	Ф	deg
Crossing angle	ϕ	deg

Free parameter	Symbol	Constrain	
Spherical mirrors spacing	d_1		
Planar mirrors spacing	d_2		
Cavity height	h	$[0, L_{\mathrm{RT}}/4]$	
Radius of curvature	R		
Mirror diameter	Φ	$h - \Phi > h d_1 - d_2 /(d_1 + d_2)$ $d_1 \tan \alpha > \Phi/2$	
Roundtrip length	L_{RT}	$n\times c/(f_{\mathrm{rep}}), n\in\mathbb{Z}$	
Laser pulse energy	U	$U < \mathcal{F}_{\max} \pi w_s w_t / 2$	
Cavity stability		$Tr(M_t) < 2$ $Tr(M_s) < 2$	

Optimisation strategy: geometrical parameters

Runtime test of Monte-Carlo vs Simplex

Monte-Carlo (previous study)

Simplex (this study)

> 10 million iterations for convergence

< 100 iterations for convergence

The simplex optimisation is more than four orders of magnitude faster than the Monte-Carlo technique

Impact of thermal effects

Thermal lensing

- The performance of the Fabry-Perot cavity can be affected by thermal effects, such as thermal lensing.
- Main contribution to thermal lensing is from the temperature dependence of the refractive index of the optical substrate

$$f_{\text{thermal}} = \frac{2\pi\kappa}{1.3b(dn/dT)l} \frac{w^2}{P} = \frac{1}{m_0} \frac{w^2}{P}$$

Note: m_0 is a material-dependent parameter.

FIG. 1. Absorption of light at the coated surface of optical components is responsible for a temperature gradient across a hemisphere around the reflection spot with radius w. The related thermal expansion of the substrate changes the sagitta s by δs .

From 10.1103/PhysRevA.44.7022

Parameter	Symbol	Unit
Beam power	Р	W
Beam waist	W	Μ
Thermal conductivity	κ	W/(mK)
Temperature dependence of the refractive index	dn/dT	1/K
Thickness of the medium	1	m
Absorption coefficient	b	1/m

Implementation of thermal effects

- Thermal effects were implemented for a cavity with FS substrates.
- The thermal focal length is typically in the 100 1000 m range.
- Flux decrease up to 83% from adding thermal effects to a pre-optimised cavity
- Effect can be cancelled by running the optimisation with the thermal effects.

Parameter	Symbol	W/O thermal lensing	W thermal lensing	
Waist size sagittal	w _{0s} [μm]	15.6	33.6	83% loss
Waist size tangential	<i>w</i> _{0t} [μm]	23.3	41.5	III IIUX
Pulse energy	<i>U</i> [mJ]	140	36	

CERN

Example case: HPCI

Baseline Parameters of a High-Pulse Current Injector (HPCI) ICS source (optimised Fabry-Perot cavity)

Parameter	Value	Unit
Round-trip length	1	m
$2d_1, 2d_2, h, R$	21.43, 28.54, 1.16, 21.46	cm
N_p, N_0, F	2292, 1298, 1000	
w_{0s}/w_{0t}	8.6/13.4	μm
Effective gain	264	
Effective energy	6	J
Colliding Laser	Value	Unit
Wavelength	515	nm
Pulse energy	10	μJ
Pulse length	1.2	ps
Crossing angle	2	0
Outcoming Photons	Value	Unit
Compton edge	2.1	MeV
Total flux, $\mathcal F$	2.2×10^{13}	ph/s
Bandwidth (0.5 mra	d) 2.0	9/0
Flux (0.5 mrad)	1.6×10^{12}	ph/s
Average Brilliance,	\mathcal{B} 4.4 × 10 ¹³	(1)
Peak Brilliance, $\hat{\mathcal{B}}$	3.9×10^{23}	(1)
(1) $ph/(s mm^2 mrad^2 0.1\%)$	(BW)	

Significant improvements were made for the optimisation of a burst-mode operated Fabry-Perot cavity.

The goal of the optimisation is to provide the maximum possible flux, with state-of-the-art technology.

Burst parameters optimisation: By maximising the effective energy of the cavity, an increase in the total flux of more than 40% was obtained.

Geometry optimisation: By using the simplex algorithm, the computation runtime was reduced by more than four orders of magnitude. Thermal effects were implemented in the geometrical optimisation.

Example case: The present considerations can be used to design high-intensity linac-based ICS sources. By applying this optimization to the HPCI source, a total flux of 10¹³ ph/s could be obtained.

