

Nonlinear optics from hybrid dispersive orbits

Yongjun Li NSLS-II

67th ICFA workshop on Future light sources. Lucerne 8/27-9/1, 2023

Outline

- Motivation: optics correction order-by-order
- Review existing methods and expansion to harmonic sextupoles
- Simulations and preliminary beam studies
- Summary

Motivations

- After orbit and linear optics correction, measured dynamic aperture is smaller than simulation
- Nonlinear optics are not corrected, relying on online optimization
- Sext settings are based on on-bench PS calibration
- Not ready for sext correction? in-series PS scheme

Order-by-order optics corrections

0th order: closed orbit correction using dipole kicks

1st order: beta-beat (phase advance) correction using quads

2nd order: chromatic function correction using sexts

3rd order: correction using octupoles ?

Existing methods

- Correction of multiple nonlinear resonances in storage rings, R. Bartolini, et al., PRST-AB, 2008
- First simultaneous measurement of sextupolar and octupolar resonance driving terms in a circular accelerator from turn-by-turn beam position monitor data, A Franchi, et al., PRST-AB, 2014
- Nonlinear optics from off-energy closed orbits, D. Olsson et al., PRAB, 2020

$$\frac{\Delta\beta(z)}{\beta_0} = \frac{\delta}{2\sin 2\pi\nu_0} \int_z^{z+L} \beta(k-m\eta) \cos[2\nu_0(\varphi_z-\varphi_\zeta+2\pi)] d\zeta,$$

m: sext's strength, η : dispersion

How about harmonic sextupoles (HS)?

• Some 4th generation light source rings (ALS-U) and colliders (EIC) have HS

Possible solutions

Creating horizontal dispersion or local bump for HS
Pros: easy to understand
Cons: sophisticated implementation, time-consuming

Measuring with hybrid dispersive orbits (this talk)
Pros: easy to implement, fast
Cons: some requirements on hardware

Hybrid dispersive optics using skew quads

~3% of normal quad

Choosing SQM's
$$K_1 = 0.07 \text{ m}^{-2}$$

g = 0.7 T/m

See hardware requirements later: to produce measurable dependency

Hybrid dispersive orbit (dp=0.5%)

- Measuring optics with different energies
- Computing chromatic function

Measurable dependency for harm. sext.

N: No, without vertical offset Y: Yes, with vertical offset

SM1: Chromatic sext SH3: Harmonic sext

Not too much change for SM1, While SH3 is measurable

Full resp. matrix for all harm. sexts

Computed with MAD-X's PTC module

Simulation 1: two isolated errors

High degeneracy was found among harm. sexts

Although can not exactly reproduce errors, the optics distortion can be corrected well

Simulation 2: random errors

Still with high degeneracy, but the optics distortion can be corrected well

Dynamic aperture for simulation 2

On- and off-momentum DAs before/after correction

- Modest improvement on dynamic apertures
 - Sexts are close, strong degeneracy exists
 - Only first order $(d\beta/d\delta)$ has been corrected

Degeneracy of two adjacent sexts

Beam studies: a two-stage calibration

Stage one: calibrate chromatic sexts (similar idea as MAX-IV, but using TbT data) – from horizontal dispersive orbits

Incorporating chromatic sext errors into model and using it reference

Stage two: calibrate harmonic sexts, using the first stage result as reference – from hybrid dispersive orbits

Two-stage online calibration results

Validation by flipping v-dispersion

switch all skew quads from K_1 to $-K_1$, vertical dispersion will be flipped as well, nonlinear chromatic optics remains same

Measurements

Similar tendency

Requirements on hardware

Sexts: Powered independently X

Skew quads: capable to generate desired vertical dispersion X

BPMs: sufficiently accuracy \checkmark

Summary

- Chromatic function on hybrid dispersive orbits for calibrating harmonic sexts
- New facilities with HS might need independently powered sexts and strong skews

