



## Low-Alpha Storage Ring Design for Steady-State Microbunching to generate EUV radiation

On behalf of Tsinghua SSMB team

**Zhilong Pan** 

2023/08/29



Accelerator Laboratory of Tsinghua University

FLS2023, Lucerne, Switzerland, Aug.27-Sep.2, 2023





# **Introduction** Linear lattice design Nonlinear study **Summary**







# **Introduction** Linear lattice design Nonlinear study **Summary**









\*



Coherent radiation:  $P \propto N_e^2$ 

kW average power EUV radiation for lithography and high flux EUV for ARPES





- **Electron storage ring-based, longitudinal dynamics** study needed
- Bunching system laser modulator, instead of RF cavity
- **Two key points: Microbunching for strong coherent** radiation; turn-by-turn steady state for high repetition rate

FLS2023, Lucerne, Switzerland, Aug.27-Sep.2, 2023 Accelerator Laboratory of Tsinghua University

D. F. Ratner and A. W. Chao, Phys. Rev. Lett. 105, 154801 (2010).



### **DLSR and SSMB**





### **SSMB** schemes





- Low-alpha ring (~100 nm bunch) + LSF(~3nm)
- Required laser power: hundreds MW, pulsed, Duty rate: 1%
- Pulse power : several kW, average power : several tens W

- normal ring + ADM compress (~3nm)
- □ Required laser power: ~1 MW
- Low bunching factor, coasting beam (@10A)
- □ Average power : ~ kW

- □ Low-alpha ring (~100 nm bunch) + ADM
  - compress (~3nm)
- □ Required laser power: ~1 MW
- □ high bunching factor
- Average power : ~ kW
  (@1A)

A low-alpha ring which is very different from normal ring is demanded by SSMB.



#### **Existing low-alpha mode ring**

- □ The bunch length in existing low-alpha mode ring:~1 ps
- □ There are two reasons why existing ring can' t meet SSMB requirements:
- Wavelength of bunching system
- Partial alpha effect or local R56

| Facilities             | Circumference[m] | Achieved alpha          |
|------------------------|------------------|-------------------------|
| Diamond light source   | 561.6            | $-6 \times 10^{-5}$     |
| Metrology light source | 48               | $\sim 1 \times 10^{-5}$ |
| BESSY II               | 240              | $7.3 \times 10^{-6}$    |
| SOLEIL                 | 354              | $1.7 \times 10^{-5}$    |
| TPS                    | 518.4            | $-3 \times 10^{-7}$     |



N.P. Abreu et al WE5RFP010 PAC09

Accelerator Laboratory of Tsinghua University





# **I**Introduction Linear lattice design Nonlinear study **Summary**





### Partial alpha effects in low alpha ring

$$I_{\overline{\alpha}} = \left( \left( \widetilde{a_{sj}} - \left( \widetilde{a_{sj}} \right) \right)^{2} \right) = \left( \widetilde{a_{sj}}^{2} \right) - \left( 2\widetilde{a_{sj}} \right) \left( \widetilde{a_{sj}} \right) + \left( \widetilde{a_{sj}} \right)^{2} = \left( \widetilde{a_{sj}}^{2} \right) - \left( \widetilde{a_{sj}} \right)^{2}$$

$$I_{\overline{\alpha}} = \left( \left( \widetilde{a_{sj}} - \left( \widetilde{a_{sj}} \right) \right)^{2} \right) = \left( \widetilde{a_{sj}}^{2} \right) - \left( 2\widetilde{a_{sj}} \right) \left( \widetilde{a_{sj}} \right) + \left( \widetilde{a_{sj}} \right)^{2} = \left( \widetilde{a_{sj}}^{2} \right) - \left( \widetilde{a_{sj}} \right)^{2}$$

$$I_{\overline{\alpha}} = \left( \left( \widetilde{a_{sj}} - \left( \widetilde{a_{sj}} \right) \right)^{2} \right) = \left( \widetilde{a_{sj}}^{2} \right) - \left( 2\widetilde{a_{sj}} \right) \left( \widetilde{a_{sj}} \right) + \left( \widetilde{a_{sj}}^{2} \right)^{2} = \left( \widetilde{a_{sj}}^{2} \right)^{2} - \left( \widetilde{a_{sj}} \right)^{2}$$

$$I_{\overline{\alpha}} = \left( \left( \widetilde{a_{sj}} - \left( \widetilde{a_{sj}} \right) \right)^{2} \right) = \left( \widetilde{a_{sj}}^{2} \right) - \left( 2\widetilde{a_{sj}} \right) \left( \widetilde{a_{sj}} \right) + \left( \widetilde{a_{sj}}^{2} \right)^{2} = \left( \widetilde{a_{sj}}^{2} \right)^{2} - \left( \widetilde{a_{sj}}^{2} \right)^{2}$$

$$I_{\overline{\alpha}} = \left( \left( \widetilde{a_{sj}} - \left( \widetilde{a_{sj}} \right) \right)^{2} \right) = \left( \widetilde{a_{sj}}^{2} \right) - \left( 2\widetilde{a_{sj}}^{2} \right) \left( \widetilde{a_{sj}} \right) + \left( \widetilde{a_{sj}}^{2} \right)^{2} - \left( \widetilde{a_{sj}}^{2} \right)^{2}$$

$$I_{\overline{\alpha}} = \left( \left( \widetilde{a_{sj}} - \left( \widetilde{a_{sj}} \right) \right)^{2} \right) = \left( \widetilde{a_{sj}^{2}} \right)^{2} - \left( \left( \widetilde{a_{sj}} \right)^{2} \right)^{2}$$

$$I_{\overline{\alpha}} = \left( \left( \widetilde{a_{sj}} - \left( \widetilde{a_{sj}} \right) \right)^{2} \right) = \left( \widetilde{a_{sj}^{2}} \right)^{2} - \left( \widetilde{a_{sj}^{2}} \right)^{2} - \left( \widetilde{a_{sj}^{2}} \right)^{2}$$

$$I_{\overline{\alpha}} = \left( \left( \widetilde{a_{sj}} - \left( \widetilde{a_{sj}} \right) \right)^{2} \right) = \left( \widetilde{a_{sj}^{2}} \right)^{2} - \left( \left( \widetilde{a_{sj}^{2}} \right)^{2} \right)^{2}$$

$$I_{\overline{\alpha}} = \left( \widetilde{a_{sj}^{2}} \right)^{2} - \left( \widetilde{a_{sj}^{2}} \right)^{2} - \left( \widetilde{a_{sj}^{2}} \right)^{2} \right)^{2}$$

$$I_{\overline{\alpha}} = \left( \widetilde{a_{sj}^{2}} \right)^{2} - \left( \widetilde{a_{sj}^{2}} \right)^{2} - \left( \widetilde{a_{sj}^{2}} \right)^{2} - \left( \widetilde{a_{sj}^{2}} \right)^{2}$$

$$I_{\overline{\alpha}} = \left( \widetilde{a_{sj}^{2}} \right)^{2} - \left( \widetilde{a_{sj}^{2}} \right)^{2} - \left( \widetilde{a_{sj}^{2}} \right)^{2} - \left( \widetilde{a_{sj}^{2}} \right)^{2} \right)^{2}$$

$$I_{\overline{\alpha}} = \left( \widetilde{a_{sj}^{2}} \right)^{2} - \left( \widetilde{a_{sj}^{2}} \right)^{2} - \left( \widetilde{a_{sj}^{2}} \right)^{2} - \left( \widetilde{a_{sj}^{2}} \right)^{2}$$

$$I_{\overline{\alpha}} = \left( \widetilde{a_{sj}^{2}} \right)^{2} - \left( \widetilde{a_{sj}^$$

S

1







### **Lattice parameters**

| Parameters                      | Value            | Units   |
|---------------------------------|------------------|---------|
| Circumference                   | 143.78           | m       |
| Beam energy                     | 400              | MeV     |
| Tunes x/y                       | 18.58/7.11       | /       |
| Phase slippage factor           | 2.69e-6          | /       |
| 2nd order phase slippage factor | 1.23e-4          | /       |
| Natural emittance               | 281.7            | pm      |
| LM wavelength                   | 1                | $\mu m$ |
| LM voltage                      | 100              | kV      |
| Energy spread                   | 2.23×10-4        | /       |
| Bunch length at straight        | 91.4             | nm      |
| Damping times (x/y/z)           | 191.3/191.3/96.5 | ms      |
| Energy loss per turn            | 0.71             | keV     |





#### Twiss of ring

## The bunch length at straight is less than 100 nm





# □ Introduction Linear lattice design Nonlinear study **Summary**





### **High order momentum compaction factor**

• Destroy RF bucket if too large

 $\alpha = \alpha_{c} + \alpha_{2}\delta + \cdots$  $\alpha_{c2} = \frac{1}{C} \int_{0}^{C} \left(\frac{\eta_{2}}{\rho} + \frac{{\eta_{1}}^{\prime 2}}{2}\right) ds$ 



Fig. 8. Effect of second-order momentum compaction factor on longitudinal phase space in ring. The first-order momentum compaction factor in (a), (b), and (c) is  $2.2 \times 10^{-3}$ . The second-order momentum compaction factors in (a), (b), and (c) are 0.006, 0.02311, and 0.06, respectively.

when  $|\alpha_2| > \alpha_{2Cr}$ , the RF bucket will transmit to  $\alpha$ -bucket, bucket area will shrink

$$\alpha_{2Cr} = \sqrt{\frac{E_0 h |\alpha_1|^3}{12 e V_{rf} [-\cos\varphi_s + \left(\frac{\pi}{2} - \varphi_s\right) \sin(\varphi_s)]}}$$

$$\eta_2(s) = -\eta_1(s) + \frac{1}{2\sin\pi Q_x} * \int_{s}^{s+C} \sqrt{\beta_x(s)\beta_x(\sigma)} \cos(\pi Q_x - \mu_{\sigma s}) * \\ \left( K_1(\sigma)\eta_1(\sigma) - \frac{1}{2} K_2(\sigma)\eta_1^2(\sigma) \right) d\sigma$$

The sextupoles should be located at dispersive location to correct chromaticities for three directions, at least three families needed.

P.Gladkikh Design of laser-electron storage ring lattice dedicated to generation of intense X-rays under Compton scattering Eun-San Kim 2007 Jpn. J. Appl. Phys. 46 7952

### **Nonlinear dynamics optimization**



**\square** Bucket width will be 1  $\mu m$  in SSMB ring

清莱大学

Tsinghua University

- The path length oscillation amplitude by transverse longitudinal coupling can be larger than 1 μm easily.
- Particles with large transverse size will jump in different buckets and make longitudinal motion become unstable



• Define the Hamiltonian as (under 3rd order, omit longitudinal Hamiltonian)

 $H(J_x, J_y, \delta) = \mu_x J_x + \mu_y J_y + h_{11001} J_x \delta + h_{00111} J_y \delta + |h_{20001}| J_x \delta e^{-2\phi_x j} + |h_{00201}| J_y \delta e^{-2\phi_y j} + h_{11001} J_y \delta e$ 

• So we can get path length deviation from T-L coupling (linear dispersion not discussed)

$$\Delta z = \frac{\partial H}{\partial \delta} = h_{11001}J_x + h_{00111}J_y + |h_{20001}|J_x e^{-2\phi_x j} + |h_{00201}|J_y e^{-2\phi_y j}$$

From J. Bengtsson

$$h_{11001} = \frac{1}{4} \sum_{i=1}^{N} \left[ (b_2 L)_i - 2(b_3 L)_i \eta_{xi} \right] \beta_{xi}$$

$$h_{00111} = -\frac{1}{4} \sum_{i=1}^{N} \left[ (b_2 L)_i - 2(b_3 L)_i \eta_{xi} \right] \beta_{yi}$$

$$h_{20001} = \frac{1}{8} \sum_{i=1}^{N} \left[ (b_2 L)_i - 2(b_3 L)_i \eta_{xi} \right] \beta_{xi} e^{j2\mu_{xi}}$$

$$h_{00201} = -\frac{1}{8} \sum_{i=1}^{N} \left[ (b_2 L)_i - 2(b_3 L)_i \eta_{xi} \right] \beta_{yi} e^{j2\mu_{yi}}$$

#### We can get more accurate expression as

$$\begin{split} \Delta z_n &= T_{511} x_n^2 + T_{512} x_n x_n' + T_{522} x_n'^2 \qquad x_n = \sqrt{2\beta_x J_x} \cos(2\pi v_x n + \phi_0) \\ & x_n' = -\sqrt{\frac{2J_x}{\beta_x}} (\alpha_x \cos(2\pi v_x n + \phi_0) + \sin(2\pi v_x n + \phi_0)) \\ \Delta z &= (\beta_x T_{511} - \alpha_x T_{512} + \gamma_x T_{522}) J_x + A_x J_x \sin(4\pi v_x n + \psi_A) \\ A_x^2 &= \beta_x^2 T_{511}^2 + \beta_x \gamma_x T_{512}^2 + \gamma_x^2 T_{522}^2 - 2\alpha_x (\beta_x T_{511} + \gamma_x T_{522}) T_{512} + 2(\alpha_x^2 - 1) T_{511} T_{522} \\ h_{11001} &= 2\pi \xi_x = \beta_x T_{511} - \alpha_x T_{512} + \gamma_x T_{522}^2 \\ h_{20001} &= \sqrt{\beta_x^2 T_{511}^2 + \beta_x \gamma_x T_{512}^2 + \gamma_x^2 T_{522}^2 - 2\alpha_x (\beta_x T_{511} + \gamma_x T_{522}) T_{512} + 2(\alpha_x^2 - 1) T_{511} T_{522}}. \end{split}$$



16

- According to J. Bengtsson's formula, we have no knobs to control the h20001 and h00201 if sextupoles are all used periodically.
- We can break the period by the layout below







# **Introduction** Linear lattice design Nonlinear study **Summary**





We have done the analysis for partial alpha effects in low alpha ring, and proposed a method to minimize it.

- Based on the analysis, the linear lattice is designed, bunch length under 100 nm can be hold in the ring.
- We have done some preliminary studies on the nonlinear optimization for this kind of storage ring, the 6-D DA will be limited by T-L coupling, which has been optimized by specialized sextupole scheme.





## Thanks for your attention! Comments are appreciated!

