

The BESSY III Lattice

A highly competitive non-standard lattice for a 4th gen. Light Source with Metrology and Timing Capabilities

P. Goslawski for the CDR, accelerator & lattice design team

(M. Arlandoo, **M. Abo-Bakr, B. Kuske, J. Bengtsson, J. Völker**, V. Dürr, A. Jankowiak et al.,) (K. Holldack, Z. Hüsges, K. Kiefer, A. Meseck, R. Müller, M. Sauerborn, O. Schwarzkopf, J. Viefhaus et al.,) Combined function or Homogenous bend

Overview - The Menu

- What is currently going on...
 - HZB with BESSY II & MLS (PTB)
 - BESSY II+ with focus on operando capabilities, modernization & sustainability

- BESSY III
 - Overview, Goals, Planning, Parameters
 - Towards a BESSY III design lattice

A Metrology Solution, an unconventional, but competitive approach

Two partners & two synchrotron radiation sources

ernsehturm am Alexanderplatz

BESSY II

1.7 GeV, DBA, 5 nm rad, 300 mA 240 m, 16 Straights, 5 m since 1998

Soft and tender X-rays Spectro-Microscopy Timing: low α , femto-slicing SB, VSR, TRIBs/2-Orbits

Photon Science	Accelerators	Scientific Instrumentation & Support

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

MLS Metrology Light Source 630 MeV, DBA 100 nm rad, 200 mA 48 m, 4 Straights since 2007

THz / IR to VUV, EUV Optimised for low α , SSMB studies

Talk by A. Chao on Monday 11:30h Storage ring based steady state microbunching

A DI NN

ight Source

Lithography Optics Division	ZTISSE CHILIDIS SHE	
Acknowledgment	_	
Thanks to a huge team effort at		
 FOM-Rijnhuizen 		
TNO TPD		
PTB-BESSY		
IWS Dresden		
Philips		
Heidenhain		
 The teams at ASML and Zeiss 		
 and many others 		
Part of this work was supported by:	science was	
Bundesministerum für Bildung und Forschung Projekt "Grundlagen der EUV-Lithographie" 13N8088 and 13N8837, MEDEA Projects "EXTATIC" and EAGLE" and European Commission Project 507754 "More Moore"	Budeuninianium In-Balang and Totolong	
2006 EUVL Symposium Easting the Associate Rock?	7001	HZB

Last years at BESSY II (2014 - 2022)

BESSY VSR - Variable Pulse Storage Ring

• Short (intense) and long bunches simultaneously by a rf beating scheme

• 2015 - ongoing, complexity of sc cavities & sc modules

TRIBs for bunch separation and more

• Transverse Resonance Island Buckets

- Developed towards User-Operation
 - 3 TRIBs user weeks with TopUp until 2022
 - \circ But then no further development \rightarrow BIII
- Extended radiation properties
 - MHz helicity flipping of undulator radiation
 - MHz fast two color spectroscopy

Overview - BESSY II+ / III

Towards BESSY III by using BESSY II, BESSY II+

BESSY II+ paves the way to BESSY III

BESSY II+ project							Operation								
022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	
													Be	amline Tr	ansfer
	CDR			т	DR			Proj	ect/Con	structio	n	Co	m. 🛛	Operat	ion
2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	
20)22	222 2023 CDR 222 2023	CDR 022 2023 2024 022 2023 2024	CDR 2024 2025 022 2023 2024 2025	CDR Tt 022 2023 2024 2025 2026 CDR Tt 022 2023 2024 2025 2026	CDR TDR 022 2023 2024 2025 2026 2027 022 2023 2024 2025 2026 2027	CDR TDR 022 2023 2024 2025 2026 2027 2028 D22 2023 2024 2025 2026 2027 2028	CDR TDR 022 2023 2024 2025 2026 2027 2028 2029 022 2023 2024 2025 2026 2027 2028 2029	CDR TDR Project 022 2023 2024 2025 2026 2027 2028 2029 2030 CDR TDR Project Project Project 022 2023 2024 2025 2026 2027 2028 2029 2030	CDR TDR Project/Construction 022 2023 2024 2025 2026 2027 2028 2029 2030 2031 CDR TDR Project/Construction 022 2023 2024 2025 2026 2027 2028 2029 2030 2031	CDR TDR Project/Construction 022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 CDR TDR Project/Construction 022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032	CDR TDR Project/Construction 022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 CDR TDR Project/Construction 022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033	CDR TDR Project/Construction Construction 022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 CDR TDR Project/Construction Construction Co	CDR TDR Project/Construction Contraction 022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 CDR TDR Project/Construction Contraction Contraction Contraction 022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035	O22 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 O22 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 O22 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 O22 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

BESSY II+ application/project: operando capabilities, modernization, and sustainability.

100 M€ (25 % HZB, 25% strategic partners or third-party projects, 50 % request funding bodies) split up in 50 % for 8 new beamlines, endstations & sample environment, 15 % for improving the sustainability of BESSY II, 35 % modernization of the accelerator complex BESSY III Hardware / Tech.

Future BESSY III Science Case

Active Higher-Harmonic Cavities together with ALBA & DESY – first beam test in BESSY II now !

Talk by F. Cullinan on Monday 12:00h Storage ring based steady state microbunching

P. Goslawski, The BESSY 3 Lattice - A Metrology Solution, FLS 2023, Lucerne, Switzerland, 2023

Hybrid-Permanent Magnets – replace power hungry (30 kW) bending electromagnet in BESSY II transferline – metrology suitable PM dipole

HZB :: BESSY II Light Source

BESSY III - The triad for a world leading facility for material discovery

a globally competitive 4th generation synchrotron radiation source
 embedded in the integrated research campus Berlin-Adlershof
 dedicated to metrology and metrological materials science

BESSY III Requirements & Objectives

P. Goslawski, The BESSY 3 Lattice - A Metrology Solution, FLS 2023, Lucerne, Switzerland, 2023

Facility parameters

- 1. 1st undulator harmonics polarized up to 1 keV from conventional APPLE-II
- 2. Diffraction limited till 1 keV
 - Stay in Berlin-Adlershof

3.

4.

- Nanometer spatial res. & phase space matching
- 5. PTB/BAM metrology applications

Already at BESSY II, a 3rd generation **without** combined function bends

Ring parameters

- 1. Ring Energy **2.5 GeV** (1.7 GeV)
- 2. Emittance

100 pm rad (5 nm rad)

- 3. Circumference **350 m 16 straights @ 5.6 m** (240 m @ 4 m)
- 4. Low beta straights & maybe round beams
- 5. Metrology source Homogenous bends

Measuring he field at the source point with a NMR probe in a volume of 10x10x10 mm

6. Momentum compaction factor

HZB ::: BESSY II Light Source

> 1.0e-4

BESSY III

100x times more brightness than BESSY II & 1000x times smaller focus at sample (10μm down to 10nm)

Talk by A. Meseck on Thursday 14-16h Dev. of the In-vacuum APPLE II Undulators

In situ & operando, sample environment, material labs

→ Integrated Research Campus

BESSY III Lattice Design

A Metrology Solution, an unconventional, but competitive approach

> Poster by Bettina Kuske Deterministic Approach to Lattice Design of BESSY III

LEGO Approach - Basic building blocks of one sector

UC - Unit Cell DSC - Dispersion Suppress.. MC - Matching Cell

A 6-MBA has 5-MBA-UC 4 pure UC and 1 (2 x ½) broken UC → DSC

16 straights & sectors:

360° / 16 = 22.5° per sector 4*4.5° main UC bend & 2*2.25° DSC bend

The process towards a BESSY III lattice - metrology challenge

A deterministic lattice approach

- Stepwise: Power and Function of each Component &"Knob" → LEGO approach
- After first "wild" lattices we concluded on:
- Limiting the hardware (conservative ansatz)
 - Bore diameter of 25 mm
 Diameter inner/outer vac. pipe of 18/21 mm
 - \circ Bends up to 1.4 T
 - \circ ~ Combined fct. Bend 0.8 T & 15 T/m or 30 T/m ~
 - Quads up to 60 80 T/m (depends on RB)
 - \circ Sextupoles up to 4000 T/m²
 - Spacing between magnets 100 mm
- **H**igher**O**rder**A**chromat Approach:
 - 6MBA + homogenous metrology bend
 - With Reverse Bends, so far no LGBs

A homogenous metrology bend

- Include it right from the beginning
 → Symmetric sector cell ansatz
- Two lattice candidates:
 - cf-lattice: combined function bend In center of 6MBA (community standard) sf - cf - cf - cf - cf - sf cf - cf - cf - cf - cf
 - sf-lattice: separated (homogenous)
 Bend in the center of 6MBA (metrology):
 cf sf sf sf sf cf
 sf sf sf sf sf

LEGO approach of building a lattice Setting up and investigation the individual components

- **MBA-unit cell (UC)**, Dispersion suppression cell (DSC), Matching Cell (MC) Quadrupol-Triplett + straight
 - **MBA-UC:** Main bend; 2x focusing in x,y plane; 2x sextupoles for chromaticity correction
- Pure 6-MBA **HOA** fixed phase advances between sextupoles, defines the MBA-UC !!
 - Integer tunes UC: (0.4, 0.1) * 5 = (2.0, 0.5), Section (2.75, 0.8125), Ring (44, 13)
 - 2 families of chromatic sextupoles **only**. SX & SY to fit chromaticity to zero
- Findings, Results:

$$\xi = \frac{\Delta Q}{\Delta p/p} \sim \oint -k_1(s)\beta(s)ds$$

$$\xi_{tot} \sim \oint [k_2(s) \ D(s) - k_1(s)] \ \beta(s) \ ds$$

The process towards a BESSY III lattice - Linear Beam Dynamics LEGO approach - the "one and only" (deterministic) MBA-Unit Cell (UC) for

- The two different MBA-UCs: **cf & sf**
- UC (4.5°): Q_xy = (0.4, 0.1), Chrom_xy = (0.0, 0.0)

and for the hardware specifications of our project

Impact of reverse bend on alpha & emittance Magnet arrangement

LEGO approach - Unit Cell - Magnet arrangement

- How to set up the MBA-UC?
- Magnet positioning/arrangement in that way, to reduce the sextupole strength for the chromatic correction → as less as possible non-linear power

$$\xi_{tot} \sim \oint [k_2(s) \ D(s) - k_1(s)] \ \beta(s) \ ds$$

• The cf MBA-UC:

SetUp	Length	alpha	Emittance	RB angle	Nat Chrom	SUM(b3 * L) ² for Chrom = 0 SF, SD [1/m ²]
SX, RB, SY, B	2.446 m	2.5e-4	95 pm rad	-0.38 ° (k = 6.7) L = 0.163*2	-0.701, -0.355	2324.77 21.02, -26.84
RB, SX, SY, B	2.490 m	2.7e-4	95 pm rad	-0.26° (k = 6.8) L = 0.125 *2	-0.802, -0.278	<mark>3905.21</mark> 27.96, -34.22

LEGO approach - Unit Cell - Magnet arrangement

- How to set up the MBA-UC?
- Magnet positioning/arrangement in • that way, to reduce the sextupole strength for the chromatic correction \rightarrow as less as possible non-linear power

$$\xi_{tot} \sim \oint [k_2(s) \ D(s) - k_1(s)] \ \beta(s) \ ds$$

The sf MBA-UC:

	SetUp	Length	alpha	Emittance	RB angle	Nat Chrom	SUM(b3 * L) ² for Chrom = 0 SF, SD [1/m ²]
	SX, RB, <mark>QD, SY</mark> , B	2.670 m	2.0e-4	100 pm rad	-0.23 ° (k = 8.6) L = 0.175*2	-0.751, -0.277	<mark>901.43</mark> 10.56, -18.42
	SX, RB, <mark>SY, QD</mark> , B	2.610 m	2.1e-4	98 pm rad	-0.23° (k = 8.5) L = 0.14 * 2	-0.740, -0.295	1500.19 17.60, -20.98
oslaw	RB, SX, QD, SY, B	2.700 m rology Solutior	2.0e-4 , FLS 2023, Luc	98 pm rad erne, Switzerland, 202	-0.19° (k = 8.4) ₂₃ L = 0.13 * 2	-0.835, -0.232	2781.58 19.39, -31.86 15 HZB

The process towards a BESSY III lattice - Linear Beam Dynamics LEGO approach - the "one and only" (deterministic) MBA-Unit Cell (UC) for

- The two different MBA-UCs: **cf & sf**
- UC (4.5°): Q_xy = (0.4, 0.1), Chrom_xy = (0.0, 0.0)

and for the hardware specifications of our project

Impact of reverse bend on alpha & emittance Magnet arrangement

P. Goslawski, The BESSY 3 Lattice - A Metrology Solution, FLS 2023, Lucerne, Switzerland, 2023

LEGO approach - Unit Cell - Impact of Reverse Bend

- The two different MBA-UCs: **cf & sf**
- UC (4.5°): Q_xy = (0.4, 0.1), Chrom_xy = (0.0, 0.0)

Magnet arrangement Cf sf CF-UC with 1m long main bends SF-UC with 1m long main bends Jx = 1.7 Jx = 1.0 500 Emittance in pmrad mom. com. factor 1.0e-4 Emittance in pmrad 🔺 mom. comp. factor 1.0e-4 compaction factor [1.0e-4] compaction factor [1.0e-4] 400 400 Emittance in pmrad Emittance in pmrad 300 300 200 momentum momentum 100 0 100 0 Jx = 2.3 Jx = 2.5 -0.2 -0.8 -0.6 -0.4 0.0 -0.8 -0.6 -0.4 -0.2 0.0 $C_q \gamma^2 I5$ Reverse bend angle in ° Reverse bend angle in ° $\epsilon_0 =$ P. Goslawski, The BESSY 3 Lattice - A Metrology Solution, FLS 2023, Lucerne, Switzerland, 20 17

and for the hardware specifications of our project

Impact of reverse bend on alpha & emittance

LEGO approach - Unit Cell - Impact of Reverse Bend

- The two different MBA-UCs: cf & sf
- UC (4.5°) : Q_xy = (0.4, 0.1), Chrom_xy = (0.0, 0.0)•

and for the hardware specifications of our project

0.2

0.1

0.0

-0.1

-5

2 З

dp in %

-3 -2 -10

-4

20

P. Goslawski, The BESSY 3 Lattice - A Metrology Solution, FLS 2023, Lucerne, Switzerland, 2023

Non-linear optimization

- Defining target parameters for non-linear optimization and "knobs"
- Target parameters: (benchmark MAX IV, SLS2):
 - Tune Shift With Momentum TSWM:
 ΔQx, ΔQy ~ 0.1 at Δp = +-3% (+-5%)
 - Tune Shift with Amplitude TSWA:
 ΔQx, ΔQy ~ 0.1 limits acceptance ~3mm

• Knobs:

- Chromatic Octupoles for 2nd order chromaticity
- Split up of chromatic sextupoles (TSWM + TSWA)

• Findings, Results:

- The two lattice candidates show an opposite behavior in order to reduce TSWM
 - SF3 with biggest impact at sf lattice
 - SF1 with biggest impact at cf lattice

Non-linear optimization

The process towards a BESSY III lattice - Summary

Homogenous bend lattice

- With advantages:
 - Strongly reduced sextupole strength for chromaticity correction
 - Better momentum acceptance due to reduced higher order chromaticity contributions
- Next steps:
 - Non-linear optimisation scheme
 - Robustness & Tolerance analysis
 - Injection scheme & Collective effects
 - Intensify discussions with construction & engineering department

Thank you for your attention !

Entering the CDR Phase with New Positions:

Magnet Development	_ >	J. Völker
Beam Dynamics	_>	P. Goslawski
	_>	A. Jankowiak

See HZB homepage: <u>www.helmholtz-berlin.de</u> (if available again after CyberAttack)

