

Status of Advanced Photocathodes for SRF Guns

Rong Xiang

Future Light Sources 2023, 27 Aug.–1 Sep. 2023

Rong Xiang | Institute of Radiation Physics | www.hzdr.de

Outline

- 1. Introduction
- 2. Normal conducting photocathodes for SRF guns
 - Metal photocathodes
 - Semiconductor photocathodes
- 3. Superconducting photocathodes for SRF guns
- 4. Summary and outlook

HZDR

Rong Xiang I HZDR

1. Introduction

SRF gun - promising source for high brightness and high current beams required by CW FELs and ERL facilities.

- high gradients on the cathode surface than DC guns increasing achievable surface current density and reducing thermal emittance contribution;
- high beam energy to mitigate space-charge effects on the way from the gun to the next accelerator cavity;
- outstanding vacuum environment for sensitive cathodes;
- low RF jitter for excellent e- beam and light source stability.

1. Introduction

SRF guns for CW high brightness beam

1. Introduction Requirements for photocathodes in SRF gun

General requirements for photocathode in injectors

- high QE, low thermal emittance, fast response time
- robust , long lifetime
- low dark current

Specially for SRF guns:

- clean for SC cavities
- properties at cryogenic temperature thermal conductivity, thermal expansion (SC cathode) transition temp., critical magnetic field
- Multipacting issue: secondary electron yield
- heat load: laser heating, RF power deposition

2.1 Metal photocathodes in SRF Guns

Metal	QE	φ (eV)	Tc (K)
Cu	10 ⁻⁵ - 10 ⁻⁴	4.6	
Mg	10 ⁻⁵ - 10 ⁻³	3.6	
Nb	10-6 - 10-4	4.3	9.3
Pb	10 ⁻⁶ - 10 ⁻³	4.2	7.2

Advantage: robust and "clean" for SRF guns

Lide, D. R.. Properties of Solids, *CRC Handbook of Chemistry and Physic, Internet Version 2005*, P. 124; S. Halas, Materials Science-Poland, Vol. 24, No. 4, 2006 D.H. Dowell et al., NIMA 622, Pages 685-697 (2010)

6

2.1 Metal photocathodes in SRF Guns

Mg, Cu in HZDR SRF gun

Cu cathode: gun commissioning

- easy to use
- little dark current
 - QE_{258nm}~10⁻⁵ -10⁻⁴

Mg cathode: stable operation

- high QE at UV laser, long life time
- no multipacting problem
- low dark current 30nA @14 MV/m
- repeatable

Highlight:

2019 - 2020 stable operation for users 200-250 pC, 100 kHz, 1760 hrs, ~ 57 C

J.Teichert et al. PRAB 24, 033401 (2021)

2.1 Metal photocathodes in SRF Guns

Cu photocathode for LCLS-II HE SRF gun

Status: in developing

- cryogenic (55-80 K) or warm (300 K)
- first photocathode for gun test

2.2 Semiconductor photocathodes in SRF Guns

Cathode	Typical wavelength (nm)	QE @ room Temp.	E _G +E _A (eV)	Expected thermal emittance (μm/mm)
Cs ₂ Te	266	0.1	3.5	0.9
Cs ₃ Sb	432	0.15	1.6+0.45	0.7
K ₃ Sb	400	0.07	1.1+1.6	0.5
Na ₃ Sb	330	0.02	1.1+2.44	0.4
Na _z KSb	330	0.1	1+1	1.1
K ₂ CsSb	532	0.1	1+1.1	0.4
GaAs(Cs,O)	532	0.1	1.4 ± 0.1	0.44
GaN(Cs)	250-360	0.2-0.3	3.4 -?	-

D.H. Dowell et al., NIMA 622, Pages 685-697 (2010) Xiaohui Wang et al., J. Mater. Chem. C, 2021, 9, 13013

9

2.2 Semiconductor photocathodes in SRF Guns

Cs₂Te for HZDR SRF gun

Status: stable operation

- ✓ Since 2020 for user operation
- ✓ Providing ~200 pC, 2.3 ps, 50-100 kHz
- ✓ 2-3 months life time with QE 0.5%-1%
- ? Possible QE drops due to transport, multipacting, CW RF and beam operation

- **2.2 Semiconductor photocathodes in SRF Guns**
 - K₂CsSb for BNL 113MHz SRF gun

Cathode Temp 300 K

Status: routine operation

- \checkmark 1-2 months lifetime of QE 1-4 %
- ✓ 1-2 nC/bunch, 375ps, 78 kHz
- Dedicated procedure against \checkmark multipacting
- Ion bombardment or Cs depletion ?

11

2.2 Semiconductor photocathodes in SRF Guns

K₂CsSb on transparent superconductor for KEK SRF gun

Status: in developing

- Cathode rod will be operated at 2 K.
- K₂CsSb photoemitter on SC substrate
- Laser from backside
- QE was decreased during cooling in 1st test

courtesy of T. Konomi, Ziye Yin

2.2 Semiconductor photocathodes in SRF Guns

Na-K-Sb for HZB SRF gun SEAlab

Status: in developing

- multilayer- and epitaxial-growth
- Promising robustness for Na-K-Sb with QE up to 2.4% at 515 nm wavelength
- Post growth analysis by spectral response (SR) measurements under UHV conditions

S. Misty, J. Dube, T. Kamps, J. Kuehn, C. Wang, Proceedings of IPAC 2023, THPA141.

2.2 Semiconductor photocathodes in SRF Guns

K₂CsSb for PKU DC-SRF gun

D.Ouyang et al., NIM A Vol. 1026, 2022; Y. Zhao, Front. Phys., Vol. 11, 2023

2.2 Semiconductor photocathodes in SRF Guns

GaN(Cs) as potential new cathode

Status: in study

- Commercial high doping p-GaN on sapphire / Si / SiC
- activation only with cesium
- QE~ 11.5 % @ 310nm and lifetime~ 5000 h in storage
- ? test in SRF gun environment

J. Schaber er al., Scientific Reports 13 (1), 3188, 2023

3. Superconducting photocathodes for SRF guns

SC photocathode for DESY SRF gun

courtesy of D. Bazyl, E. Vogel

Status: in developing

- 1. Pb coating on Nb plug (or Cu Plug)
- QE reached 2.7 x 10⁻³ @ 213 nm
- air-stable photocathode
- better adhesion required
- 2. Surface plasmon enhanced Nb (or Cu)

Nanostructured Cu (credit: DESY NanoLab)

3. Superconducting photocathodes for SRF guns

SC photocathode: Plasmonic Nb cathode @ Jlab / RadiaBeam

F.E. Hannon, et al., IPAC2019, TUPTS069, Melbourne, Australia

4. Summary and outlook

- Proper cathode solution is a key to the successful gun operation

HZDR, BNL - routine operation HZB, PKU - test beam DESY, KEK, SLAC/MSU - active developing

- Both metal and semiconductor cathodes can be safe in SRF guns various solutions of cathode integration (cold or warm)
- Important: technical know-how

heat load, thermal contact, suppressing multipacting, particle free operation, vacuum during transport and operation, ...

- Theoretical understanding and full characterization:

QE & intrinsic emittance vs. temperature & RF & beam operation

– The ideal photocathode for an SRF gun?

Beam requirements

Method to integrate cathode to cavity

Laser cost

Development phase: commissioning, user operation

Acknowledgement

Dmitry Bazyl, Elmar Vogel (DESY) Ziye Yin, Taro Konomi (FRIB) Huamu Xie, Senlin Huang (PKU) Mengjia Gaowei (BNL) Jana Schaber (HZDR) Julius Kühn, Thorsten Kamps (HZB)

Thank you !

r.xiang@hzdr.de