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Refactoring: Overview

▶ code basis: split up

▶ lattice parser ← FLAME [2]

▶ TPSA → gtpsa [3] ← gtpsa-cpp

▶ modernised language “std::” containers, “arma::mat” for matrices (interface)

▶ autotools → cmake
▶ split up: multipole evaluation → field kick

▶ delegates:
▶ field interpolation
▶ radiation calculation (only if there)

▶ lets observe: phase space

thus fine grained control if required or not

▶ python interface ← pybind11 [4] → elements in pyton

▶ many parameters: double or truncated power series objects

▶ worked on user interface simplification
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Machine elements in python
Example: non linear kicker

class AirCoilMagneticField(tslib.Field2DInterpolation):

"""Field of an air coil"""

def __init__(self, *, positions, currents):

tslib.Field2DInterpolation.__init__(self)

def field_py(self, pos, field):

x, y = pos

dz = x + y * 1j - self.positions # offset from wire

r = np.absolute(dz), phi = np.angle(dz)

B = (self.precomp * 1 / r * np.exp((phi + np.pi / 2) * 1j)).sum()

field[0], field[1] = B.imag, B.real

class NonlinearKickerField(AirCoilMagneticField):

"""Field created by a classical telephone transmission cable"""

def __init__(self, *, pos, current):

p = np.array([pos, pos.conjugate(), -pos.conjugate(), -pos])

currents = np.array([current] * len(pos)) * [1, -1, -1, 1]

AirCoilMagneticField.__init__(self, positions=pos, currents=currents)

struct aircoil_filament {

double x, y, current;

};

template<class C>

AirCoilMagneticFieldKnobbed(

const std::vector<aircoil_filament_t> filaments,

const double scale=1e0);

template<typename T>

inline void _field(const T& x, const T& y, T *Bx, T *By) const {

const double precomp = mu0 / (2 * M_PI) * this->m_scale;

*Bx = *By = 0e0;

for(const auto& f: this->m_filaments){

const T dx=x-f.x, dy=y-f.y, r2=dx*dx + dy*dy; // offset from wire

*By += precomp * f.current / r2 * dx;

*Bx += precomp * f.current / r2 * dy;

}

}

[5]

I

B

Source: Wikipedia
by Jfmelero
Element in Python
Called from C++ code

as prototype
then reimplemented in C++

https://commons.wikimedia.org/w/index.php?curid=3634402
https://commons.wikimedia.org/w/index.php?curid=3634402
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Model based Beam based alignment
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▶ 1. quad: ∆K ,−∆K →
derive orbit distortion

▶ ideal orbit distortion for this
quad

▶ expected distortions: bpm
measurement .

▶ measured distortions: bpm
measurement x

▶ scale expected to
measurement → dipole from
feed down → quadrupole
offset
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Truncated power series: variables by name

Variables, knobs by name

▶ dimension names

d = dict(x=0, px=1, y=2, py=3, delta=4, ct=5,

K=6, dx=7, dy=8)

named_index = gtpsa.IndexMapping(d)

▶ variables

delta.set_variable(1e-3, "delta")

▶ knobs

dx.set_knob(1e-3, "dx")

Quadrupole strength as knob

Access to field advance

Variables, knobs by name

Quadrupole strength as knob

k_org = magnet.get_main_multipole_strength()

k = gtpsa.ctpsa(desc, po,

mapping=named_index)

k.set_knob(k_org, "K")

muls = magnet.get_multipoles()

muls.set_multipole(2,

gtpsa.CTpsaOrComplex(k))

Access to field advance

Variables, knobs by name

Quadrupole strength as knob

Access to field advance

dq_dK = ps.ct.get(K=1)
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Example beam based alignment: phase advance
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Field advance computed

▶ instrumented quad K

▶ propagated phase space

dq_dK = ps.ct.get(K=1)

Similar approach for orbit distortion due to K

Cross check

▶ predicted phase advance

▶ measured by tune measurement

▶ cross check of: polarity ∆K applied
in machine
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Beam based alignment: distorted orbit
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Model setup

▶ quadrupole displaced 0.3mm (as
knob)

▶ artifical steerer ← compensate quad
feed down

▶ ∆K 2%

Comparison: distorted orbit

▶ Closed orbitfinder (numeric jacobian)

▶ phase space at element → stored in
observer → extract:

dx = [ob.getTPSA().get(dx=1)

for ob in observers]
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Data models
Simplify processing

Definition
▶ intuitve schema of

used data
▶ uses:

▶ sub data models
▶ primitive types

Example: BBA

measurements for
magnet → measurement
point → bpm’s → bpm
planes
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Recommendations I

Start: definitions
▶ target

▶ basis

▶ Cross check with original author

Very useful: documentation of physics model [1]

Start: perparations

▶ code parts: standard libraries → replacement

▶ version control system

▶ automatic documentation tool (sphinx, doxygen,)
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Recommendations II

Refactoring preparation

▶ work plan → “identify rip apart and reassemble”

▶ build and test system (run frequently)
▶ Build up of test system

▶ total function test
▶ “saftey warnings”

Refactoring: Step I

▶ upgrade code base → modern standard

▶ as long as checkable with test base

End: Hold point: upgraded code base
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Recommendations III

Refactoring: Step II

▶ Start with largest intervention

▶ Run full funtion test (e.g. with compatability layer)

Refactoring: cont.

similar to above

Don’t forget

▶ distribute early

▶ distriubte often

Detailed in [6]
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Digital twin: nomen clature

model shadow twin

Status
▶ different beam dynamics models available ← interaction
▶ Matlab Middle Layer [7] + Accelerator Toolbox: [8] similar simulation many

different ring light sources
▶ further online model implementations for ring light sources: DIAMOND [9],

NSLS II [10], SLS [11] Solaris [12],
▶ FLAME: FRIB online model [2]

Need to go further?

▶ 20 years → experience gained
▶ software industry → Futures (“beer garden” buzzers), async, µ-services
▶ compare: iso standard , functional mock-up interface

split up [13], iso standard [14]
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Digital twin
Developments performed

▶ started with Tracy-2 and Guabao’s implementation [10]

▶ first motivation to refactor Tracy 2 (setting multipoles with methods)

▶ Tracy-2 → thor-scsi → python wrapper

▶ implemented as IOC using pydevice [15, 16]

▶ REST-API interface

▶ Data models being developed

▶ Bluesky[17] based measurement scripts

▶ used as basis for refactoring (model based) Beam Based Alignment
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Architecture chosen

Simulator Machine

Ophyd

Bluesky run engine Data
base

Data
broker

Config 
database

Simulator Glue Machine Glue

Applications

Space
Translators

Ophyd drivers
Epics Middle layer 

Application layer

async

synchron

Generators

Tools layer
Simulator
▶ virtual accelerator (as

PyEPICS IOC1)
▶ properties: getter

/ setters
▶ requesting

(delayed)
calculations

▶ EPICS interface:
records update
data export

▶ facade
▶ initialisation
▶ calculation

functors
▶ method resolvers

Space translators
▶ engineering ↔

physics

▶ implemented as
EPICS IOC’S →
update on machine
change

Applications

▶ “Bluesky” as
interface

▶ standard
applications
REST API based

1input output controller
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REST API: advantages

▶ proper data model → data stored in
database

▶ with a few lines of python code:
▶ standard services: display

▶ data model / schema
▶ data services
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Model Beam based alignment

Uncertainties
▶ Quadrupole ∆K = f (∆I )

▶ calculated quadrupole offset

Cross check
▶ ∆K = f (∆I ) : measure tune advance, predict in model → compare
▶ offset:

▶ “displace” quadrupole in model
▶ add “compensating” steerer at exact same position
▶ run measurement script versus model
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Digital twin for different machines

simplification: data model

▶ devices
▶ preprocessed (physics ready) data
▶ analysis results

Software: split up

▶ Berlin accelerator comissioning toolkit
▶ split up in (sub)repositories)
▶ functionalities:

analysis, Ophyd drivers, Bluesy plans
▶ split up:

▶ core: machine independent
▶ custom

▶ epics IOC: dt4acc
▶ engineering ↔ physics
▶ pushing data to simulator
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What’s missing: data models

proper data models

representation of

▶ measured (raw) data of devices

▶ preparation of calculations

▶ analysis results

Modelling individual blocks

micro-service like structure see functional modelling standard

Physics Engineering Conversion

Current implementation

▶ based as EPICS IOC

▶ loaded from text file

▶ needs: proper data models

Conversion

see open simulation library

▶ Conversion layer

▶ information layer
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Digital twin: the other world

Accelerator community

▶ Online models

▶ Switchable models

Aerospace community

For space probes

▶ analogue twins

▶ analogue twin test beds

▶ digital models of subsystems

▶ digital test beds

Think different: PLC2

▶ Design machine

▶ Design control application

▶ Implement control application vs
digital twin

▶ switch over to real machine

Naval industry

▶ Functional mock-up interface (time
concept!)

▶ open simulation platform

2PLC: Product life cycle
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Functional mock-up interface / Open simulation platform

▶ Industry approach: split up in
Functional mock-up units
(C-libraries)
▶ ODE3equation, (sub)simulation,

time concept
▶ derivatives Jv
▶ loading settings / state
▶ XML: description

▶ integration: open simulation
platform open integration platform
[18, 19]: separation of conversion /
communication

▶ alternate approach: Lume project
(LCLS-II)

Concept of time

ti-1 ti+1ti

vc(t)

vd(t)

vk(t)

vd(-ti)
vd(+ti)

vk(ti,n) vk(ti,n+1)

advancing time

3Ordinary Differential Equation

fhi-standard.org
https://fmi-standard.org/docs/3.0.1/#advancing-time
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Conclusion

▶ Tracy II → thor scsi → refactored
same code base
▶ tracking (doubles)
▶ g(tpsa)

▶ digital twin
▶ based on: available tools

▶ bluesky
▶ REST API . . .

▶ focus: existing machines: BESSY II &
MLS

▶ implementation: separated in
subpackages

▶ started data models
▶ devices
▶ preprocessed (physics ready) data
▶ analysis result

What’s happening:
elsewhere ?
in industry ?

Looking into
functional mock-up interface
open simulation platform
lume project

Towards a full facility digital twin?
Adapt to our needs
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