
Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Digital Twin

Are we there?

Conclusion

Building Digital Models with thor scsi
An Evolutionary Approach

Waheedullah Sulaiman Khail, Pierre Schnizer, Paul Goslawski

Helmholtz-Zentrum Berlin (HZB), Germany

31. August 2023



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Digital Twin

Are we there?

Conclusion

Overview

Thor scsi
Refactoring
User interface simplifications

Excursus: (model based) beam based alignment
User interface: gtpsa variables by name

Data models
Lessons learned: thor-scsi refactoring

Digital Twin
User access: REST API

Are we there?

Conclusion



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Digital Twin

Are we there?

Conclusion

Acknowledgement

Johan Bengtsson for preparing his code base, the updated documentation of the
physics and maths involved [1], many tests and reviews of the
developed code, reimplementing linear optics optimisation code in
python, teaching proper dynamics. . . , kayaking

Markus Ries practical machine steering knowledge . . . good nerves

Guabao Shen for NSLS II virtual accelerator code share

Thomas Birke introduction to EPICS control system

BESSY II and MLS all people that make it all actual work

all that I am not even aware that they make my work possible



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

User interface
simplifications

Data models

Lessons learned:
thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

Refactoring: Overview

▶ code basis: split up

▶ lattice parser ← FLAME [2]

▶ TPSA → gtpsa [3] ← gtpsa-cpp

▶ modernised language “std::” containers, “arma::mat” for matrices (interface)

▶ autotools → cmake
▶ split up: multipole evaluation → field kick

▶ delegates:
▶ field interpolation
▶ radiation calculation (only if there)

▶ lets observe: phase space

thus fine grained control if required or not

▶ python interface ← pybind11 [4] → elements in pyton

▶ many parameters: double or truncated power series objects

▶ worked on user interface simplification



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

User interface
simplifications

Data models

Lessons learned:
thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

Machine elements in python
Example: non linear kicker

class AirCoilMagneticField(tslib.Field2DInterpolation):

"""Field of an air coil"""

def __init__(self, *, positions, currents):

tslib.Field2DInterpolation.__init__(self)

def field_py(self, pos, field):

x, y = pos

dz = x + y * 1j - self.positions # offset from wire

r = np.absolute(dz), phi = np.angle(dz)

B = (self.precomp * 1 / r * np.exp((phi + np.pi / 2) * 1j)).sum()

field[0], field[1] = B.imag, B.real

class NonlinearKickerField(AirCoilMagneticField):

"""Field created by a classical telephone transmission cable"""

def __init__(self, *, pos, current):

p = np.array([pos, pos.conjugate(), -pos.conjugate(), -pos])

currents = np.array([current] * len(pos)) * [1, -1, -1, 1]

AirCoilMagneticField.__init__(self, positions=pos, currents=currents)

struct aircoil_filament {

double x, y, current;

};

template<class C>

AirCoilMagneticFieldKnobbed(

const std::vector<aircoil_filament_t> filaments,

const double scale=1e0);

template<typename T>

inline void _field(const T& x, const T& y, T *Bx, T *By) const {

const double precomp = mu0 / (2 * M_PI) * this->m_scale;

*Bx = *By = 0e0;

for(const auto& f: this->m_filaments){

const T dx=x-f.x, dy=y-f.y, r2=dx*dx + dy*dy; // offset from wire

*By += precomp * f.current / r2 * dx;

*Bx += precomp * f.current / r2 * dy;

}

}

[5]

I

B

Source: Wikipedia
by Jfmelero
Element in Python
Called from C++ code

as prototype
then reimplemented in C++

https://commons.wikimedia.org/w/index.php?curid=3634402
https://commons.wikimedia.org/w/index.php?curid=3634402


Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

User interface
simplifications

Data models

Lessons learned:
thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

Machine elements in python
Example: non linear kicker

class AirCoilMagneticField(tslib.Field2DInterpolation):

"""Field of an air coil"""

def __init__(self, *, positions, currents):

tslib.Field2DInterpolation.__init__(self)

def field_py(self, pos, field):

x, y = pos

dz = x + y * 1j - self.positions # offset from wire

r = np.absolute(dz), phi = np.angle(dz)

B = (self.precomp * 1 / r * np.exp((phi + np.pi / 2) * 1j)).sum()

field[0], field[1] = B.imag, B.real

class NonlinearKickerField(AirCoilMagneticField):

"""Field created by a classical telephone transmission cable"""

def __init__(self, *, pos, current):

p = np.array([pos, pos.conjugate(), -pos.conjugate(), -pos])

currents = np.array([current] * len(pos)) * [1, -1, -1, 1]

AirCoilMagneticField.__init__(self, positions=pos, currents=currents)

struct aircoil_filament {

double x, y, current;

};

template<class C>

AirCoilMagneticFieldKnobbed(

const std::vector<aircoil_filament_t> filaments,

const double scale=1e0);

template<typename T>

inline void _field(const T& x, const T& y, T *Bx, T *By) const {

const double precomp = mu0 / (2 * M_PI) * this->m_scale;

*Bx = *By = 0e0;

for(const auto& f: this->m_filaments){

const T dx=x-f.x, dy=y-f.y, r2=dx*dx + dy*dy; // offset from wire

*By += precomp * f.current / r2 * dx;

*Bx += precomp * f.current / r2 * dy;

}

}

[5]

I

B

Source: Wikipedia
by Jfmelero
Element in Python
Called from C++ code

as prototype
then reimplemented in C++

https://commons.wikimedia.org/w/index.php?curid=3634402
https://commons.wikimedia.org/w/index.php?curid=3634402


Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

User interface
simplifications

Excursus: (model
based) beam based
alignment

User interface:
gtpsa variables by
name

Data models

Lessons learned:
thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

Model based Beam based alignment

0 5 10 15 20 25 30 35 40 45
s [m]

150

100

50

0

50

100

150

x 
[

m
]

model kick for  10 rad
model kick for  2  10 rad 
model kick for -2  10 rad 

▶ 1. quad: ∆K ,−∆K →
derive orbit distortion

▶ ideal orbit distortion for this
quad

▶ expected distortions: bpm
measurement .

▶ measured distortions: bpm
measurement x

▶ scale expected to
measurement → dipole from
feed down → quadrupole
offset



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

User interface
simplifications

Excursus: (model
based) beam based
alignment

User interface:
gtpsa variables by
name

Data models

Lessons learned:
thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

Truncated power series: variables by name

Variables, knobs by name

▶ dimension names

d = dict(x=0, px=1, y=2, py=3, delta=4, ct=5,

K=6, dx=7, dy=8)

named_index = gtpsa.IndexMapping(d)

▶ variables

delta.set_variable(1e-3, "delta")

▶ knobs

dx.set_knob(1e-3, "dx")

Quadrupole strength as knob

Access to field advance

Variables, knobs by name

Quadrupole strength as knob

k_org = magnet.get_main_multipole_strength()

k = gtpsa.ctpsa(desc, po,

mapping=named_index)

k.set_knob(k_org, "K")

muls = magnet.get_multipoles()

muls.set_multipole(2,

gtpsa.CTpsaOrComplex(k))

Access to field advance

Variables, knobs by name

Quadrupole strength as knob

Access to field advance

dq_dK = ps.ct.get(K=1)



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

User interface
simplifications

Excursus: (model
based) beam based
alignment

User interface:
gtpsa variables by
name

Data models

Lessons learned:
thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

Truncated power series: variables by name

Variables, knobs by name

▶ dimension names

d = dict(x=0, px=1, y=2, py=3, delta=4, ct=5,

K=6, dx=7, dy=8)

named_index = gtpsa.IndexMapping(d)

▶ variables

delta.set_variable(1e-3, "delta")

▶ knobs

dx.set_knob(1e-3, "dx")

Quadrupole strength as knob

Access to field advance

Variables, knobs by name

Quadrupole strength as knob

k_org = magnet.get_main_multipole_strength()

k = gtpsa.ctpsa(desc, po,

mapping=named_index)

k.set_knob(k_org, "K")

muls = magnet.get_multipoles()

muls.set_multipole(2,

gtpsa.CTpsaOrComplex(k))

Access to field advance

Variables, knobs by name

Quadrupole strength as knob

Access to field advance

dq_dK = ps.ct.get(K=1)



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

User interface
simplifications

Excursus: (model
based) beam based
alignment

User interface:
gtpsa variables by
name

Data models

Lessons learned:
thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

Truncated power series: variables by name

Variables, knobs by name

▶ dimension names

d = dict(x=0, px=1, y=2, py=3, delta=4, ct=5,

K=6, dx=7, dy=8)

named_index = gtpsa.IndexMapping(d)

▶ variables

delta.set_variable(1e-3, "delta")

▶ knobs

dx.set_knob(1e-3, "dx")

Quadrupole strength as knob

Access to field advance

Variables, knobs by name

Quadrupole strength as knob

k_org = magnet.get_main_multipole_strength()

k = gtpsa.ctpsa(desc, po,

mapping=named_index)

k.set_knob(k_org, "K")

muls = magnet.get_multipoles()

muls.set_multipole(2,

gtpsa.CTpsaOrComplex(k))

Access to field advance

Variables, knobs by name

Quadrupole strength as knob

Access to field advance

dq_dK = ps.ct.get(K=1)



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

User interface
simplifications

Excursus: (model
based) beam based
alignment

User interface:
gtpsa variables by
name

Data models

Lessons learned:
thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

Example beam based alignment: phase advance

q1
m1d

1r
q1

m1d
2r

q1
m1d

3r
q1

m1d
4r

q1
m1d

5r
q1

m1d
6r

q1
m1d

7r
q1

m1d
8r

q1
m1t

1r
q1

m1t
2r

q1
m1t

3r
q1

m1t
4r

q1
m1t

5r
q1

m1t
6r

q1
m1t

7r
q1

m1t
8r

q1
m2d

1r
q1

m2d
2r

q1
m2d

3r
q1

m2d
4r

q1
m2d

5r
q1

m2d
6r

q1
m2d

7r
q1

m2d
8r

q1
m2t

1r
q1

m2t
2r

q1
m2t

3r
q1

m2t
4r

q1
m2t

5r
q1

m2t
6r

q1
m2t

7r
q1

m2t
8r

q2
m1d

1r
q2

m1d
2r

q2
m1d

3r
q2

m1d
4r

q2
m1d

5r
q2

m1d
6r

q2
m1d

7r
q2

m1d
8r

q2
m1t

1r
q2

m1t
2r

q2
m1t

3r
q2

m1t
4r

q2
m1t

5r
q2

m1t
6r

q2
m1t

7r
q2

m1t
8r

q2
m2d

1r
q2

m2d
2r

q2
m2d

3r
q2

m2d
4r

q2
m2d

5r
q2

m2d
6r

q2
m2d

7r
q2

m2d
8r

q2
m2t

1r
q2

m2t
2r

q2
m2t

3r
q2

m2t
4r

q2
m2t

5r
q2

m2t
6r

q2
m2t

7r
q2

m2t
8r

q3
m1d

1r
q3

m1d
2r

q3
m1d

3r
q3

m1d
4r

q3
m1d

5r
q3

m1d
6r

q3
m1d

7r
q3

m1d
8r

q3
m1t

1r
q3

m1t
2r

q3
m1t

3r
q3

m1t
4r

q3
m1t

5r
q3

m1t
6r

q3
m1t

7r
q3

m1t
8r

q3
m2d

1r
q3

m2d
2r

q3
m2d

3r
q3

m2d
4r

q3
m2d

5r
q3

m2d
6r

q3
m2d

7r
q3

m2d
8r

q3
m2t

1r
q3

m2t
2r

q3
m2t

3r
q3

m2t
4r

q3
m2t

5r
q3

m2t
6r

q3
m2t

7r
q3

m2t
8r

q4
m1d

1r
q4

m1d
2r

q4
m1d

3r
q4

m1d
4r

q4
m1d

5r
q4

m1d
6r

q4
m1d

7r
q4

m1d
8r

q4
m1t

1r
q4

m1t
2r

q4
m1t

3r
q4

m1t
4r

q4
m1t

5r
q4

m1t
6r

q4
m1t

7r
q4

m1t
8r

q4
m2d

1r
q4

m2d
2r

q4
m2d

3r
q4

m2d
4r

q4
m2d

5r
q4

m2d
6r

q4
m2d

7r
q4

m2d
8r

q4
m2t

1r
q4

m2t
2r

q4
m2t

3r
q4

m2t
4r

q4
m2t

5r
q4

m2t
6r

q4
m2t

7r
q4

m2t
8r

q5
m1t

1r
q5

m1t
2r

q5
m1t

3r
q5

m1t
4r

q5
m1t

5r
q5

m1t
6r

q5
m1t

7r
q5

m1t
8r

q5
m2t

1r
q5

m2t
2r

q5
m2t

3r
q5

m2t
4r

q5
m2t

5r
q5

m2t
6r

q5
m2t

7r
q5

m2t
8r

1.0

0.8

0.6

0.4

0.2

0.0

0.2

$\
De

lta
\n

u_
{x

,y
}

x
y

Field advance computed

▶ instrumented quad K

▶ propagated phase space

dq_dK = ps.ct.get(K=1)

Similar approach for orbit distortion due to K

Cross check

▶ predicted phase advance

▶ measured by tune measurement

▶ cross check of: polarity ∆K applied
in machine



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

User interface
simplifications

Excursus: (model
based) beam based
alignment

User interface:
gtpsa variables by
name

Data models

Lessons learned:
thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

Beam based alignment: distorted orbit

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

10

5

0

5

10

x 
[u

m
]

0 50 100 150 200 250

10

5

0

5

10

x 
[u

m
]

Model setup

▶ quadrupole displaced 0.3mm (as
knob)

▶ artifical steerer ← compensate quad
feed down

▶ ∆K 2%

Comparison: distorted orbit

▶ Closed orbitfinder (numeric jacobian)

▶ phase space at element → stored in
observer → extract:

dx = [ob.getTPSA().get(dx=1)

for ob in observers]



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

User interface
simplifications

Data models

Lessons learned:
thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

Data models
Simplify processing

Definition
▶ intuitve schema of

used data
▶ uses:

▶ sub data models
▶ primitive types

Example: BBA

measurements for
magnet → measurement
point → bpm’s → bpm
planes



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

User interface
simplifications

Data models

Lessons learned:
thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

Recommendations I

Start: definitions
▶ target

▶ basis

▶ Cross check with original author

Very useful: documentation of physics model [1]

Start: perparations

▶ code parts: standard libraries → replacement

▶ version control system

▶ automatic documentation tool (sphinx, doxygen,)



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

User interface
simplifications

Data models

Lessons learned:
thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

Recommendations II

Refactoring preparation

▶ work plan → “identify rip apart and reassemble”

▶ build and test system (run frequently)
▶ Build up of test system

▶ total function test
▶ “saftey warnings”

Refactoring: Step I

▶ upgrade code base → modern standard

▶ as long as checkable with test base

End: Hold point: upgraded code base



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Refactoring

User interface
simplifications

Data models

Lessons learned:
thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

Recommendations III

Refactoring: Step II

▶ Start with largest intervention

▶ Run full funtion test (e.g. with compatability layer)

Refactoring: cont.

similar to above

Don’t forget

▶ distribute early

▶ distriubte often

Detailed in [6]



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Digital Twin

User access: REST
API

Are we there?

Conclusion

Digital twin: nomen clature

model shadow twin

Status
▶ different beam dynamics models available ← interaction
▶ Matlab Middle Layer [7] + Accelerator Toolbox: [8] similar simulation many

different ring light sources
▶ further online model implementations for ring light sources: DIAMOND [9],

NSLS II [10], SLS [11] Solaris [12],
▶ FLAME: FRIB online model [2]

Need to go further?

▶ 20 years → experience gained
▶ software industry → Futures (“beer garden” buzzers), async, µ-services
▶ compare: iso standard , functional mock-up interface

split up [13], iso standard [14]



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Digital Twin

User access: REST
API

Are we there?

Conclusion

Digital twin
Developments performed

▶ started with Tracy-2 and Guabao’s implementation [10]

▶ first motivation to refactor Tracy 2 (setting multipoles with methods)

▶ Tracy-2 → thor-scsi → python wrapper

▶ implemented as IOC using pydevice [15, 16]

▶ REST-API interface

▶ Data models being developed

▶ Bluesky[17] based measurement scripts

▶ used as basis for refactoring (model based) Beam Based Alignment



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Digital Twin

User access: REST
API

Are we there?

Conclusion

Architecture chosen

Simulator Machine

Ophyd

Bluesky run engine Data
base

Data
broker

Config 
database

Simulator Glue Machine Glue

Applications

Space
Translators

Ophyd drivers
Epics Middle layer 

Application layer

async

synchron

Generators

Tools layer
Simulator
▶ virtual accelerator (as

PyEPICS IOC1)
▶ properties: getter

/ setters
▶ requesting

(delayed)
calculations

▶ EPICS interface:
records update
data export

▶ facade
▶ initialisation
▶ calculation

functors
▶ method resolvers

Space translators
▶ engineering ↔

physics

▶ implemented as
EPICS IOC’S →
update on machine
change

Applications

▶ “Bluesky” as
interface

▶ standard
applications
REST API based

1input output controller



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Digital Twin

User access: REST
API

Are we there?

Conclusion

REST API: advantages

▶ proper data model → data stored in
database

▶ with a few lines of python code:
▶ standard services: display

▶ data model / schema
▶ data services



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Digital Twin

User access: REST
API

Are we there?

Conclusion

Model Beam based alignment

Uncertainties
▶ Quadrupole ∆K = f (∆I )

▶ calculated quadrupole offset

Cross check
▶ ∆K = f (∆I ) : measure tune advance, predict in model → compare
▶ offset:

▶ “displace” quadrupole in model
▶ add “compensating” steerer at exact same position
▶ run measurement script versus model



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Digital Twin

User access: REST
API

Are we there?

Conclusion

Digital twin for different machines

simplification: data model

▶ devices
▶ preprocessed (physics ready) data
▶ analysis results

Software: split up

▶ Berlin accelerator comissioning toolkit
▶ split up in (sub)repositories)
▶ functionalities:

analysis, Ophyd drivers, Bluesy plans
▶ split up:

▶ core: machine independent
▶ custom

▶ epics IOC: dt4acc
▶ engineering ↔ physics
▶ pushing data to simulator



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Digital Twin

Are we there?

Conclusion

What’s missing: data models

proper data models

representation of

▶ measured (raw) data of devices

▶ preparation of calculations

▶ analysis results

Modelling individual blocks

micro-service like structure see functional modelling standard

Physics Engineering Conversion

Current implementation

▶ based as EPICS IOC

▶ loaded from text file

▶ needs: proper data models

Conversion

see open simulation library

▶ Conversion layer

▶ information layer



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Digital Twin

Are we there?

Conclusion

Digital twin: the other world

Accelerator community

▶ Online models

▶ Switchable models

Aerospace community

For space probes

▶ analogue twins

▶ analogue twin test beds

▶ digital models of subsystems

▶ digital test beds

Think different: PLC2

▶ Design machine

▶ Design control application

▶ Implement control application vs
digital twin

▶ switch over to real machine

Naval industry

▶ Functional mock-up interface (time
concept!)

▶ open simulation platform

2PLC: Product life cycle



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Digital Twin

Are we there?

Conclusion

Functional mock-up interface / Open simulation platform

▶ Industry approach: split up in
Functional mock-up units
(C-libraries)
▶ ODE3equation, (sub)simulation,

time concept
▶ derivatives Jv
▶ loading settings / state
▶ XML: description

▶ integration: open simulation
platform open integration platform
[18, 19]: separation of conversion /
communication

▶ alternate approach: Lume project
(LCLS-II)

Concept of time

ti-1 ti+1ti

vc(t)

vd(t)

vk(t)

vd(-ti)
vd(+ti)

vk(ti,n) vk(ti,n+1)

advancing time

3Ordinary Differential Equation

fhi-standard.org
https://fmi-standard.org/docs/3.0.1/#advancing-time


Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Digital Twin

Are we there?

Conclusion

Conclusion

▶ Tracy II → thor scsi → refactored
same code base
▶ tracking (doubles)
▶ g(tpsa)

▶ digital twin
▶ based on: available tools

▶ bluesky
▶ REST API . . .

▶ focus: existing machines: BESSY II &
MLS

▶ implementation: separated in
subpackages

▶ started data models
▶ devices
▶ preprocessed (physics ready) data
▶ analysis result

What’s happening:
elsewhere ?
in industry ?

Looking into
functional mock-up interface
open simulation platform
lume project

Towards a full facility digital twin?
Adapt to our needs



Building
Digital Models
with thor scsi

An
Evolutionary
Approach

P. Schnizer
et al.

Acknowledgement

Thor scsi

Digital Twin

Are we there?

Conclusion

Conclusion

▶ Tracy II → thor scsi → refactored
same code base
▶ tracking (doubles)
▶ g(tpsa)

▶ digital twin
▶ based on: available tools

▶ bluesky
▶ REST API . . .

▶ focus: existing machines: BESSY II &
MLS

▶ implementation: separated in
subpackages

▶ started data models
▶ devices
▶ preprocessed (physics ready) data
▶ analysis result

What’s happening:
elsewhere ?
in industry ?

Looking into
functional mock-up interface
open simulation platform
lume project

Towards a full facility digital twin?
Adapt to our needs


	Acknowledgement
	Thor scsi
	Refactoring
	User interface simplifications
	Data models
	Lessons learned: thor-scsi refactoring

	Digital Twin
	User access: REST API

	Are we there?
	Conclusion



