Building Digital Models with thor_scsi An Evolutionary Approach

Waheedullah Sulaiman Khail, Pierre Schnizer, Paul Goslawski

Helmholtz-Zentrum Berlin (HZB), Germany

31. August 2023

Building Digital Models with thor_scsi An Evolutionary Approach

> P. Schnizer et al.

Acknowledgeme

Thor scsi

Digital Twin

Are we there?

Conclusion

\sim	100 A 100 A	
U	verview	
\sim		

Т

hor scsi
Refactoring
User interface simplifications
Excursus: (model based) beam based alignment
User interface: gtpsa variables by name
Data models
Lessons learned: thor-scsi refactoring

Digital Twin User access: REST API

Are we there?

Conclusion

Digital Models with thor.scsi An Evolutionary Approach P. Schnizer *et al.* Acknowledgeme Thor scsi Digital Twin Are we there?

Building

Conclusion

Acknowledgement

Johan Bengtsson for preparing his code base, the updated documentation of the physics and maths involved [1], many tests and reviews of the developed code, reimplementing linear optics optimisation code in python, teaching proper dynamics..., kayaking

Markus Ries practical machine steering knowledge ... good nerves Guabao Shen for NSLS II virtual accelerator code share Thomas Birke introduction to EPICS control system BESSY II and MLS all people that make it all actual work

all that I am not even aware that they make my work possible

Building Digital Models with thor_scsi An Evolutionary Approach

> P. Schnizer et al.

Acknowledgeme

Thor scsi Digital Twin Are we there? Conclusion

Refactoring: Overview

- code basis: split up
- ► lattice parser ← FLAME [2]
- ▶ TPSA → gtpsa [3] ← gtpsa-cpp
- modernised language "std::" containers, "arma::mat" for matrices (interface)
- \blacktriangleright autotools \rightarrow cmake
- split up: multipole evaluation \rightarrow field kick
 - delegates:
 - field interpolation
 - radiation calculation (only if there)
 - lets observe: phase space

thus fine grained control if required or not

- \blacktriangleright python interface \leftarrow pybind11 [4] \rightarrow elements in pyton
- many parameters: double or truncated power series objects
- worked on user interface simplification

Building Digital Models with thor_scsi An Evolutionary Approach

> P. Schnizer et al.

Acknowledgeme

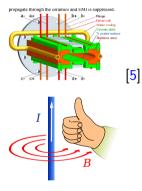
Thor scs

Refactoring

User interface simplifications

Data models

Lessons learned: thor-scsi refactoring


Digital Twin

Are we there?

Conclusion

Machine elements in python

Example: non linear kicker

Source: Wikipedia by Jfmelero Element in Python Called from C++ code

class AirCoilMagneticField(tslib.Field2DInterpolation): """Field of an air coil"""

```
def __init__(self, *, positions, currents):
    tslib.Field2DInterpolation.__init__(self)
```

def field_py(self, pos, field): x, y = pos

dz = x + y * 1j - self.positions # offset from wire
r = np.absolute(dz), phi = np.angle(dz)
B = (self.precomp * 1 / r * np.exp((phi + np.pi / 2) * 1j)).sum()
field[0], field[1] = B.imag, B.real

```
class NonlinearKickerField(AirCoilMagneticField):
    """Field created by a classical telephone transmission cable"""
```

```
def __init__(self, *, pos, current):
    p = np.array([pos, pos.conjugate(), -pos],
    currents = np.array([current] * len(pos)) * [1, -1, -1, 1]
    AirCoilMagneticField.__init__(self, positions=pos, currents=currents)
```

Building Digital Models with thor_scsi An Evolutionary Approach

> P. Schnizer et al.

Acknowledgem

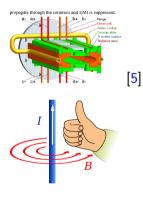
Thor scsi

Refactoring

User interface simplifications

```
Lessons learned:
```

```
Digital Twin
```


```
Are we there?
```

```
Conclusion
```

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

Machine elements in python

Example: non linear kicker

struct aircoil_filament {
 double x, y, current;
};

template<class C>

```
AirCoilMagneticFieldKnobbed(
    const std::vector<aircoil_filament_t> filaments,
    const double scale=1e0);
```

template<typename T>

3

```
inline void _field(const T& x, const T& y, T *Bx, T *By) const {
   const double precomp = mu0 / (2 * M_PI) * this->m_scale;
   *Bx = *By = 0e0;
   for(const auto& f: this->m_filaments){
      const T dx=x-f.x, dy=y-f.y, r2=dx*dx + dy*dy; // offset from wire
      *By += precomp * f.current / r2 * dx;
      *Bx += precomp * f.current / r2 * dy;
}
```

Building Digital Models with thor_scsi An Evolutionary Approach

> P. Schnizer et al.

Acknowledgem

Thor scsi

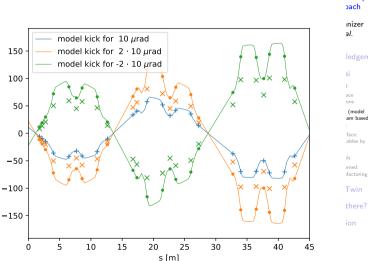
Refactoring

User interface simplifications

Data models

Lessons learned: thor-scsi refactorin

Digital Twin


Are we there?

Conclusion

Source: Wikipedia by Jfmelero Element in Python Called from C++ code

Model based Beam based alignment

- ▶ 1. quad: $\Delta K, -\Delta K \rightarrow$ derive orbit distortion
- ideal orbit distortion for this quad
- expected distortions: bpm measurement .
- measured distortions: bpm measurement x
- ► scale expected to measurement → dipole from feed down → quadrupole offset

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Building Digital Models with thor_scsi An Conary bach Truncated power series: variables by name

Variables, knobs by name

dimension names

d = dict(x=0, px=1, y=2, py=3, delta=4, ct=5, K=6, dx=7, dy=8) named_index = gtpsa.IndexMapping(d)

variables

delta.set_variable(1e-3, "delta")

knobs

```
dx.set_knob(1e-3, "dx")
```

Quadrupole strength as knob

Access to field advance

Building Digital Models with thor_scsi An Evolutionary Approach

P. Schnizer et al.

Acknowledgeme

Thor scsi

Refactoring

User interface simplifications

> Excursus: (model based) beam based alignment

User interface: gtpsa variables by name

Data models

Lessons learned: thor-scsi refactoring

Digital Twin

Are we there?

Truncated power series: variables by name

Variables, knobs by name

Quadrupole strength as knob

Access to field advance

Building Digital Models with thor_scsi An Evolutionary Approach

P. Schnizer et al.

Acknowledgeme

Thor scsi

Refactoring

User interface simplifications

> Excursus: (model based) beam based alignment

User interface: gtpsa variables by name

Data models

Lessons learned: thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Truncated power series: variables by name

Variables, knobs by name

Quadrupole strength as knob

Access to field advance

dq_dK = ps.ct.get(K=1)

Building Digital Models with thor_scsi An Evolutionary Approach

P. Schnizer et al.

Acknowledgeme

Thor scsi

Refactoring

User interface simplifications

Excursus: (model based) beam based alignment

User interface: gtpsa variables by name

Data models

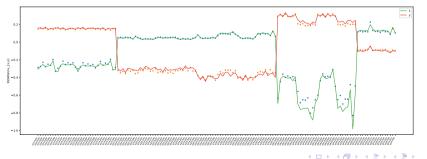
Lessons learned: thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

Example beam based alignment: phase advance


Cross check

- predicted phase advance
- measured by tune measurement
- cross check of: polarity ΔK applied in machine

Field advance computed

- \blacktriangleright instrumented quad K
- propagated phase space

Similar approach for orbit distortion due to K

Building Digital Models with thor_scsi An Evolutionary Approach

> P. Schnizer et al.

Acknowledgem

Thor scsi

Refactoring

User interface simplifications

> Excursus: (model based) beam based alignment

User interface: gtpsa variables by name

Data models

Lessons learned: thor-scsi refactoring

Digital Twin

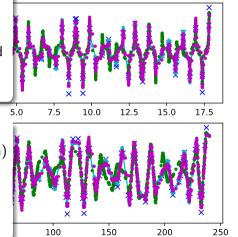
Are we there?

Beam based alignment: distorted orbit

Model setup

- quadrupole displaced 0.3 mm (as knob)
- ► artifical steerer ← compensate quad feed down

► ∆K 2%


Comparison: distorted orbit

Closed orbitfinder (numeric jacobian)

0.0

2.5

- ▶ phase space at element → stored in observer → extract:

Building Digital Models with thor_scsi An Evolutionary Approach

P. Schnizer et al.

Acknowledgem

Thor scsi

Refactoring

User interface simplifications

Excursus: (model based) beam based alignment

User interface: gtpsa variables by name

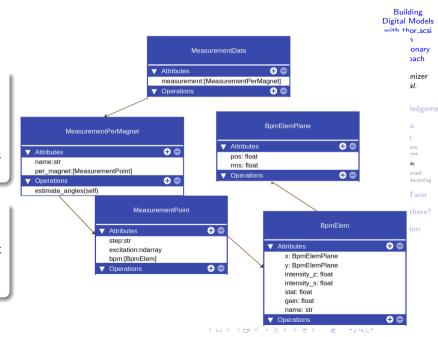
Data models

Lessons learned: thor-scsi refactoring

Digital Twin

Are we there?

Data models Simplify processing


Definition

 intuitve schema of used data

uses:

sub data modelsprimitive types

Example: BBA measurements for magnet \rightarrow measurement point \rightarrow bpm's \rightarrow bpm planes

Recommendations I

Start: definitions

- target
- basis
- Cross check with original author

Very useful: documentation of physics model [1]

Start: perparations

- \blacktriangleright code parts: standard libraries \rightarrow replacement
- version control system
- automatic documentation tool (sphinx, doxygen,)

Building Digital Models with thor_scsi An Evolutionary Approach

> P. Schnizer et al.

Acknowledgeme

Thor scsi

Refactoring

User interface simplifications

Data models

Lessons learned: thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

Recommendations II

Refactoring preparation

- \blacktriangleright work plan \rightarrow "identify rip apart and reassemble"
- build and test system (run frequently)
- Build up of test system
 - total function test
 - "saftey warnings"

Refactoring: Step I

- $\blacktriangleright \text{ upgrade code base} \rightarrow \text{modern standard}$
- as long as checkable with test base
- End: Hold point: upgraded code base

Building Digital Models with thor_scsi An Evolutionary Approach

> P. Schnizer et al.

Acknowledgeme

Thor scsi

Refactoring

User interface simplifications

Data model

Lessons learned: thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

Recommendations III

Refactoring: Step II

- Start with largest intervention
- Run full function test (e.g. with compatability layer)

Refactoring: cont.

similar to above

Don't forget

- distribute early
- distriubte often

Detailed in [6]

Building Digital Models with thor_scsi An Evolutionary Approach

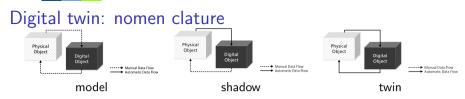
> P. Schnizer et al.

Acknowledgeme

Thor scsi

Refactoring

User interface simplifications


Data mode

Lessons learned: thor-scsi refactoring

Digital Twin

Are we there?

Conclusion

Status

- \blacktriangleright different beam dynamics models available \leftarrow interaction
- Matlab Middle Layer [7] + Accelerator Toolbox: [8] similar simulation many different ring light sources
- further online model implementations for ring light sources: DIAMOND [9], NSLS II [10], SLS [11] Solaris [12],
- FLAME: FRIB online model [2]

Need to go further?

- ▶ 20 years \rightarrow experience gained
- ▶ software industry \rightarrow Futures ("beer garden" buzzers), async, μ -services
- compare: iso standard , functional mock-up interface

Building Digital Models with thor_scsi An Evolutionary Approach

> P. Schnizer et al.

Acknowledgem

Thor scsi

Digital Twin User access: REST API

Are we there?

Digital twin Developments performed

- started with Tracy-2 and Guabao's implementation [10]
- first motivation to refactor Tracy 2 (setting multipoles with methods)
- $\blacktriangleright \ \mathsf{Tracy-2} \to \mathsf{thor}\mathsf{-scsi} \to \mathsf{python} \ \mathsf{wrapper}$
- ▶ implemented as IOC using pydevice [15, 16]
- REST-API interface
- Data models being developed
- Bluesky[17] based measurement scripts
- ▶ used as basis for refactoring (model based) Beam Based Alignment

Building Digital Models with thor_scsi An Evolutionary Approach

> P. Schnizer et al.

Acknowledgem

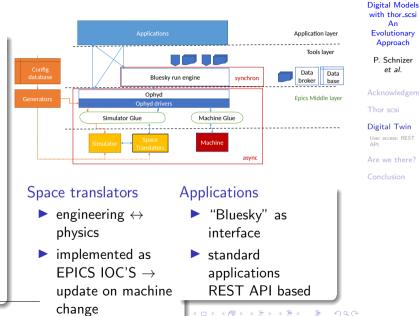
Thor scsi

Digital Twin User access: REST API

Are we there?

Conclusion

Architecture chosen


Simulator

- virtual accelerator (as PyEPICS IOC¹)
 - properties: getter / setters
 - requesting (delayed) calculations
 - EPICS interface: records update data export

facade

- initialisation
- calculation functors
- method resolvers

¹input output controller

Building

REST API: advantages

- ► proper data model → data stored in database
- with a few lines of python code:
- standard services: display
 - data model / schema
 - data services

← → C	(031610 3-64 4014 6466 -2-06244360-				
<u> </u>					
🕀 Import bookmarks 🗋 Mongo					
JSON Raw Data Headers					
Save Copy Collapse All Expand All (slow)	🗑 Filter JSON				
sequences:	[]				
🔻 quadrupoles:					
▼ 0:					
name:	"q4m2d1r"				
index:	15				
length:	0.5				
type:	"Quadrupole"				
method:	4				
<pre>number_of_integration_steps:</pre>	10				
main multipole strength:	1.40046286				
<pre>main_multipole_index:</pre>	2				
▶ 1:	{}				
▶ 2:	{}				
	(···)				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Building Digital Models with thor_scsi An Evolutionary Approach

> P. Schnizer et al.

Acknowledgeme

Thor scsi

Digital Twir

User access: REST API

Are we there?

Model Beam based alignment

Uncertainties

- Quadrupole $\Delta K = f(\Delta I)$
- calculated quadrupole offset

Cross check

- $\Delta K = f(\Delta I)$: measure tune advance, predict in model \rightarrow compare
- offset:
 - "displace" quadrupole in model
 - add "compensating" steerer at exact same position
 - run measurement script versus model

Building Digital Models with thor_scsi An Evolutionary Approach

> P. Schnizer et al.

Acknowledgeme

Thor scsi

Digital Twin

User access: REST API

Are we there?

Digital twin for different machines

simplification: data model

- devices
- preprocessed (physics ready) data
- analysis results

Software: split up

- **B**erlin **a**ccelerator **c**omissioning **t**oolkit
 - split up in (sub)repositories)
 - functionalities:
 - analysis, Ophyd drivers, Bluesy plans
 - split up:
 - core: machine independent
 - custom
- epics IOC: dt4acc
 - $\blacktriangleright \text{ engineering} \leftrightarrow \text{physics}$
 - pushing data to simulator

Finallysis	Digital Mode with thor_scs An Evolutionary Approach	
archiver	P. Schnizer	
archiver-local	et al.	
🖬 math-utils	Acknowledge	
🖌 🚞 custom	Thor scsi	
🖿 bact-bessyii-mls-ophyd		
🗸 🚞 bessyii	Digital Twin User access: REST	
🖬 analysis	API	
archiver	Are we there	
🖬 bluesky	Conclusion	
🖬 ophyd		
🗸 🚞 bpro		
archiver		
🖬 lat2db		
🗸 🚞 mls		

Building

What's missing: data models

representation of

- measured (raw) data of devices
- preparation of calculations
- analysis results

Modelling individual blocks

micro-service like structure see functional modelling standard

Physics Engineering Conversion

Current implementation

- based as EPICS IOC
- loaded from text file
- needs: proper data models

Building Digital Models with thor_scsi An Evolutionary Approach

> P. Schnizer et al.

Acknowledgeme

Thor scsi

Digital Twin

Are we there?

Digital twin: the other world

Accelerator community

- Online models
- Switchable models

Aerospace community

For space probes

- analogue twins
- analogue twin test beds
- digital models of subsystems
- digital test beds

Think different: PLC²

- Design machine
- Design control application
- Implement control application vs digital twin
- switch over to real machine

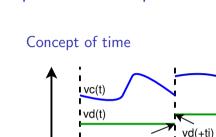
Naval industry

- Functional mock-up interface (time concept!)
- open simulation platform

Building Digital Models with thor_scsi An Evolutionary Approach

> P. Schnizer et al.

Acknowledgeme


Thor scsi

Digital Twin

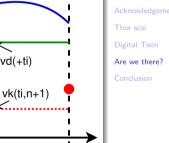
Are we there?

Functional mock-up interface / Open simulation platform

- Industry approach: split up in Functional mock-up units (C-libraries)
 - ODE³equation, (sub)simulation, time concept
 - derivatives Jv
 - loading settings / state
 - XML: description
- integration: open simulation platform open integration platform [18, 19]: separation of conversion / communication
- alternate approach: Lume project (LCLS-II)

vk(t)

ti-1


vd(-ti)

advancing time

vk(ti,n)

P. Schnizer et al.

ti+1

Conclusion

Tracy II $ ightarrow$	• thor_scsi	\rightarrow	refactored
same code	base		

- tracking (doubles)
- g(tpsa)

digital twin

based on: available tools

bluesky

- REST API ...
- focus: existing machines: BESSY II & MLS
- implementation: separated in subpackages

started data models

- devices
- preprocessed (physics ready) data
- analysis result

Building Digital Models with thor_scsi An Evolutionary Approach P. Schnizer *et al.*

Acknowledgeme

Thor scsi

Digital Twin

Are we there?

Conclusion

Conclusion

- \blacktriangleright Tracy II \rightarrow thor_scsi \rightarrow refactored same code base
 - tracking (doubles)
 - g(tpsa)
- digital twin
 - based on: available tools
 - bluesky
 - REST API
 - ▶ focus: existing machines: BESSY II & MLS
 - implementation: separated in subpackages
- started data models
 - devices
 - preprocessed (physics ready) data
 - analysis result

- What's happening: elsewhere ? in industry ?
- Looking into
 - open simulation platform lume project

Building Digital Models with thor scsi An Evolutionary Approach

> P Schnizer et al.

Thor scsi

Are we there?

Conclusion

functional mock-up interface

Towards a full facility digital twin? Adapt to our needs