Novel X-Ray Beam Position Monitor for Coherent Soft X-Ray Beamlines

Boris Podobedov* August 31, 2023

FLS 2023

*boris@bnl.gov, primary affiliation: Electron–Ion Collider, BNL

sXBPM Project Team

Dmitri Donetski

Kevin Kucharczyk

Jinghe Liu

Ricardo Lutchman

Jingze Zhao

Daniel Bacescu

Christopher Eng

Boris P.

Steven Hulbert

Motivation for Novel X-Ray BPMs

- Modern synchrotron light sources are all about photon beam brightness and stability
- X-ray beam must be stable at the user sample (position, wavefront, intensity)
- Need stability of e-beam, and of all beamline elements, starting from the undulator source
- Real-time diagnostics & feedbacks must rely on XBPMs, both white beam and mono
- White-beam XBPMs are especially important, being upstream of any beamline optics
- Standard solution (blade photoemission XBPMs) does not work for coherent soft X-ray beamlines
- Non-invasive XBPMs which preserve the coherence of the beam are still needed

"standard solution": doesn't work for coherent soft X-ray beamlines National Synchrotron Light Source II

Soft X-ray BPM (sXBPM) R&D Project at NSLS-II

Approach

 Place custom-made GaAs photodiode arrays into outer portions of X-ray beam and calculate beam position from pixel photocurrents

Potential advantages

- High sensitivity: E=1 keV photon yields E/(4eV)~250 photoelectrons in GaAs, vs. ~1 in metal blades
- Multi-pixel arrays: better positional resolution, spatial feature resolution, ability to discriminate stray light from bend magnets and other sources

Goals and constraints

- Prototype to be installed and tested in C23-ID NSLS-II canted soft X-ray undulator beamline FOE (white beam, 26 m from EPU source)
- ~1 micron positional resolution @ 10 Hz sampling, all undulator K parameter values, linear polarization
- Coherence preservation, no interference with beamline operations

J. Liu et al., MOPAB121, proc. IPAC'21

ENERGY Office of Science Science

Soft X-ray BPM (sXBPM) R&D Project at NSLS-II

Challenges

- High power density (at high K) => potentially high heat load and detector photocurrents
- Detectors must operate in UHV
- Compatibility with existing beamline operations
- sXBPM mechanical stability
- Systematic errors due to widely varying beam profile with changes of ID gap and phase
- Contamination of ID radiation with that from the closest dipole and other magnets

J. Liu et al., MOPAB121, proc. IPAC'21

sXBPM Location at 23-ID FOE

- White X-ray beam, right outside of the ring tunnel at the First Optics Enclosure (FOE)
- Two operating soft X-ray beamlines, 0.25 keV to 2 keV: IOS and CSX
- Two identical 2 m long EPUs, 49 mm period, nominally canted at 0.16 mrad
- sXBPM is ~28 m downstream from the center of the EPU pair
- sXBPM is ~1 m downstream of the FOE mask (~10x5 mm² water-cooled aperture)

X-ray Beam Power Density at sXBPM Location

- Power density of undulator radiation 26 m downstream of the CSX undulator (λ_u = 49 mm, L = 2 m) at different magnetic strength settings in linear horizontal polarization
- Photons outside the rectangle (=fixed mask projection) do not reach the sXBPM
- The aperture can be additionally limited by upstream slits

Office of

BROOKHAVE

• Photodiodes should be able to operate at power densities up to 20 W/mm²

More complicated picture during ops with 2 EPUs

Desired Detector Spectral Responsivity

- Must have spectral coverage (high responsivity) from ~650 eV to at least 2 keV, as defined by low-K operation
- At high K, high power is mainly coming from hard X-ray (i.e. on-axis, 80% @ 2-16 keV)
- => Need low hard X-ray responsivity to keep manageable photocurrent density

Detector Design, Fabrication, and Testing

for measurements of the responsivity spectra at the end

station: A, B, C three configurations studied

Photodiode array with 64 pixels

Leaded ceramic carrier with two photodiode arrays

- GaAs selected due to mature technology, ability to operate at high current density, and wide energy gap for temperature stability
- Devices with shallow p-n junctions for enhanced sensitivity in soft X-ray region were designed
- Wafers were grown by solid-source Molecular Beam Epitaxy for high quality of the top p-doped layer
- Photodiode arrays with 32 and 64 pixels were fabricated with pixels sizes from 2 x 6 to 60 x 50 μ m²
- Responsivity was measured with Ar-ion laser at 514 nm with power density up to 200 W/cm²

ENERGY Office of Science

BROOKHAVEN

Responsivity Measurements in Soft X-ray at 23-ID-1 (CSX) Beamline

Diode arrays in leaded ceramic carriers on customized 8" flange

GaAs photodiodes

CSX TARDIS chamber with diode arrays

Photocurrent map when scanning X-ray beam across detector pixel

National Synchrotron Light Source II 🔳

10

XL pixel current (nA)

0.04

Responsivity Measurements in Hard X-ray at 4-ID (ISR)

6-Circle Diffractometer

<image>

BROOKHAVE

1710 XL Mounted in Diffractometer

Photo-current vs. x-position scans

Measurement Parameters			
energy range	6-10 keV		
incident beam intensity	6 x 10 ¹⁰ – 1 x 10 ¹² photons/s		
horizontal beam size	320 – 490 μm (FWHM)		
vertical beam size	45 – 60 μm (FWHM)		

National Synchrotron Light Source II 🔳

Measured Detector Spectral Responsivity

- Good responsivity in soft X-ray, rapid fall-off in hard X-ray, as needed for sXBPM
- Pixel-to-pixel uniformity
- Good device model

IOP Publishing

Semicond. Sci. Technol. 37 (2022) 085024 (12pp)

Semiconductor Science and Technology https://doi.org/10.1088/1361-6641/ac7c88

High power density soft x-ray GaAs photodiodes with tailored spectral response

Dmitri Donetski¹, Kevin Kucharczyk¹, Jinghe Liu¹, Ricardo Lutchman¹, Steven Hulbert², Claudio Mazzoli², Christie Nelson² and Boris Podobedov^{2,*}

¹ Department of ECE, Stony Brook University, Stony Brook, NY 11794, United States of America ² Brookhaven National Laboratory, Upton, NY 11973, United States of America

Office of Science Science Science

Advantages of Pixelated Detectors for White X-ray Beams

- Provide useful information on top of the beam centroid position (e.g. beam cross-sectional shapes)
- Especially useful for canted beamlines
- Can discriminate between the undulator-sourced Xrays and stray light from the dipoles, etc.

Schematic of dynamic e-beam trajectory and the dipole stray radiation

Mechanical Design, Assembly, and Installation

- Features: 4 water-cooled blade (a.k.a. heatsink) assemblies, single-axis translatable blades, tungsten shields to reduce heat flux to the detector
- Challenges: stability, heat load management, compactness to fit the FOE, accessibility for modifications, alignment
- Status: design, fabrication, and installation (1 out of 4 blades) completed. Top blade with detector in-place for 2 months this summer providing first data, two blades are being installed now

C. Eng et al., MOPC01, proc. MEDSI'2020

Senergy Office of Science BROOKHAVE

Heatsink Assemblies with Detectors

Heatsink and Detector Assembly Cont'd

Heatsink assembly

Office of Science Science Science

Detector assembly

Detector assembly pre-alignment

GaAs detector array (before cleaving)

ırotron Light Source II 🔳

Vacuum Envelope Installation: pre-install

23-ID FOE Apr. 21, 2022

Vacuum Envelope Installation: completion

23-ID FOE Apr. 26, 2022

Normal beamline ops resumed in May, 2022

FOE View in Summer 2023

Electronics box with rad. shield

Flange with top blade with detector array

> Temporary viewport

23-ID FOE Aug. 2, 2023

- Only the top vertical blade with detector array was installed
- Temporary viewport was mounted on another sXBPM flange
- A pair of blades to be installed during on-going machine shutdown
 National Synchrotron Light Source II

BROOKHAVEN NATIONAL LABORATORY

Low-current Measurements

- Current-limited by vacuum conditions
- sXBPM detector array moved vertically across the X-ray beam at I=1.9 mA
- Varied EPU2 gap 20 to 50 mm (K=2.6 to 0.4)
- Intercepted beam height of 5 mm is due to FOE mask
- Detector pixel signals traced the expected X-ray beam shapes, decreasing in intensity and narrowing with larger ID gap
- No noise or parasitic signals when the detector is shaded by the mask
- Diffraction "lobes" seen when further limiting the aperture by upstream slits
- Detailed comparison with the model is in progress

High-current Measurements

- Limited by vacuum conditions, esp. at small ID gaps
- Detector parked in the slit "shade" •

BROOKHAVEN

NATIONAL LABORATORY

ENERGY

Science

Observe injection transients during 500 mA user ops •

- Signal from one of the pixels in Volts/512
- R=10 kΩ
- => I≈50/512/10k ≈ 10 uA

National Synchrotron Light Source II

High-current Measurements Cont'd

- Detector in the slit shade
- Observe sXBPM detector pixels respond to ID gap changes

achine - box64-3			- 0 ×
FreeRDP: xf23id1-ws5-2313	Aug 4 21:38		0 +
S R2028 - chicotion and research use	×		
E ROIS APS EDITOR PURKSH WEW	at Contraction P A September 2010		
Copen Save in Print - Go To Q. Find - Refactor Di Analyze Section Bill Bunchmark	ovarce Run Step Stop		
FLE NAVIGATE CODE ANALYZE SECTION	CS-Studio		
Folder File Home Share View	File Edit Search Run CS-Studio Window Help		0.18
Cont Cont Movetor X Deleter	()oen Tan Ev *bp080323.plt st		94 ; ED
Ebit Pinity € ngure1 – ⊔ X 12-Copy.txt sci File Edit View Inset Tools Desktop Window Help	nter A A T E Q Q & D X E 😸 D		
EPF - Copy.txt		M Boom current	ANNANANA
EPHttt = di0		WW Deam current W	MANAAAA .
EPitet -10 - ch2 - ch3		Upstream EPU g	ap
EPtertibit -20 EPtertibit			
Ch01.csv G			
cXRDM			
		Downstream EP	U gap
No detail	Accelerator Data Browser		

0 2000 4000 6000 8000 10000 12000 14000 16000 Time (s)	100 1730 18:00 18:30 19:00 19:30	20:00 20:30	21:00
< 230 items 1 item selected 42.0 KB	2023/08-04		
		. e. 100%	• a •
	C DSLS-II		
	A NATIONAL SHICHROTRON LIGHT SOURCE II		
	Main Launch Screen		
P Type here to search ATLAD R20226 -	t Operations		
	Launch Apps: Remote Access Personanted Restricted Emergency Off		
	Izer Storage Ring Global		
	LN-OP LTB-OP BR-OP BTS-OP SR-OP Operations Tools		gh
	Link autor be same bookt status bis status sh status i v Usprays		i – b

High-current Measurements Cont'd

- Started with fully illuminated detector
- Moved up in 50-micron steps
- Resolve the steps (and topoff injections)
- Detector noise is much smaller than the step change
- Noise standard deviation (between the steps) is equivalent to 2-4 microns
- Confident in achieving micron-scale resolution in the future with optimized electronics and multi-pixel positioncalculation algorithms

standard deviation 0.15 counts, equivalent to ~2-4 microns

National Synchrotron Light Source II

Summary

BROOKHAVE

- Non-invasive soft X-ray BPMs (sXBPMs) do not exist yet, but are greatly desired for coherent soft X-ray beamlines. We are working to develop such sXBPM for high-power, white X-ray beams
- In our approach, multi-pixel GaAs detector arrays are placed into the outer portions of X-ray beam. Beam position (+ other info) is inferred from the pixel photocurrents.
- Tailored detector responsivity from sub-keV to a few keV photon energies was accomplished with shallow p-on-n junction design
- Detector array prototypes have been manufactured and extensively characterized with highpower Ar-ion laser, and then tested in soft- and hard X-ray beamlines of NSLS-II
- sXBPM prototype with a single detector array was recently installed in high-power X-ray beam from two canted EPUs in C23-ID straight of NSLS-II
- The device successfully resolved small beam motions and gap-change-induced variations of X-ray beam shape during 500 mA user operations
- Immediate future steps: install symmetric top-bottom sXBPM configuration with 25 wired pixels per blade and optimized electronics. Studies of resolution, multi-pixel algorithm optimization, etc.
- We believe our innovative approach holds significant promise for enhancing synchrotron beamline and accelerator diagnostics, especially for highly coherent beams in future light sources

Acknowledgements

Our project is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Accelerator & Detector Research Program of Scientific User Facilities Division. This research used beamlines 4-ID (ISR) and 23-ID-1 (CSX) of the NSLS-II, a DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.