The Plasma Injector for PETRA IV.

Conceptual Design Report

Ilya Agapov, Sergey Antipov, Reinhard Brinkmann, Ángel Ferran Pousa, Sören Jalas, Manuel Kirchen, Wim Leemans, Andreas Maier, Alberto Martinez de la Ossa*, Jens Osterhoff, Rob Shalloo, Maxence Thévenet, Paul Winkler and more...

DESY. Deutsches Elektronen-Synchrotron: MPY / MPA / MLS *speaker: <u>alberto.martinez.de.la.ossa@desy.de</u>

HELMHOLTZ

Future Light Sources Workshop (FLS 2023), Lucerne.

PETRA IV. The Ultimate 3D X-ray Microscope The future 4th generation synchrotron light source at DESY

Pushing the limits in photon science

- PETRA IV will provide 100 1000 times higher brightness beams than PETRA III.
- New Extension West Hall doubles the number of photon beamlines (30): ~10,000 user/yr.
- PETRA IV will become a world reference ulletin 3D X-ray microscopy, driving groundbreaking discoveries in health, energy, mobility, information technology, earth and environment.
- PETRA IV supports new technologies and sustainability concepts for the future, e.g. plasma acceleration technology.

PETRAIV – Decoding Complexity in Nature and Technology

PETRA IV - Conceptual Design Report

PETRA IV: The (conventional) Injector system A new synchrotron booster is needed: DESY IV

The Plasma Injector for PETRA IV a competitive, compact and cost-effective alternative to conventional technology

DESY. | Plasma Injector for PETRA IV: CDR | 28.08.23 FLS23 Workshop Lucerne | A. Martinez de la Ossa

The Plasma Injector for PETRA IV a competitive, compact and cost-effective alternative to conventional technology

DESY. | Plasma Injector for PETRA IV: CDR | 28.08.23 FLS23 Workshop Lucerne | A. Martinez de la Ossa

- and advanced machine learning optimization.
- energy bandwidth and stability.

plasma injector schematic

PETRA IV: injection requirements Momentum acceptance \rightarrow 0.1% energy spread and jitter

PETRA IV acceptance:

accumulation mode (off-axis injection)

- Momentum acceptance: 1%
- Transverse acceptance: 50 nm rad

Beam parameters:

- Energy: 6 GeV
- Energy spread and jitter <~ 0.1%
- Normalized emittance $< ~12 \mu m$

Injection rate:

- User availability >98% → Filling time < 10 min
- Total charge >99% \rightarrow Top-up period < $T_{1\%}$

PETRA IV design parameters

Operation mode	Brightness	Timing
Total charge / nC	1536	640
Bunch charge / nC	0.8	8.0
Number of bunches	1920	80
Bunch spacing / ns	4	96
Beam lifetime / h	10	5
Top-up period / m	6	3

 $Q(t)/Q_0 = \exp(-t/\tau)$ beam lifetime

beam charge drops by 1% in $T_{1\%} = -\ln 0.99 \tau$

Injection rate Initial filling > 2.6 nC/s > 1.1 nC/s > 43 pC/s $> 36 \, pC/s$ Top-up

What is possible today for Laser-Plasma Accelerators? 8 GeV energy gain and 1-2 % energy spread and stability (but not simultaneously)

BELLA@LBNL: multi-GeV acceleration

Guiding of intense petawatt-class lasers: 62 pC at **6 GeV** has been demonstrated Research led by Wim Leemans (now at DESY)

LUX@DESY: enhanced energy spread and stability

Energy spread optimization: 1.1% (mad) $\rightarrow M.$ Kirchen, et al. Phys. Rev. Lett. 126, 174801 (2021)

- > 24 hours run: 100 000 consecutive electron beams \rightarrow A. Maier et al., Phys. Rev. X 10, 031039 (2020)
- Prospects of enhanced control and stability through active feedback powered by AI.

1% beam energy stability is to be expected with moderate improvements to the laser stability

 \rightarrow A. J. Gonsalves et al. Phys. Rev. Lett. 122, 084801 (2019)

Energy Compression and Stabilization of Laser-Plasma Accelerators A. Ferran Pousa et al. Physical Review Letters 129, 094801 (2022)

The Plasma Injector for PETRA IV: conceptual design Maximizes charge injection throughput and stability

Laser Plasma Accelerator (LPA)

- Drive Laser (Ti:Sa | λ_0 =800 nm): Peak power: ~350 TW, energy: ~20 J.
- Plasma source (~20 cm): Controlled injection (LUX). Efficient laser guiding (HOFI).
- Bayesian optimization: maximizes the beam spectral density at 6 GeV and minimizes the laser energy.

Energy Compression Beamline (ECB)

- Quad triplet: Beam capturing
- Chromatic chicane: pre-stretcher + chromaticity correction (horizontal plane)
- Main chicane: beam length decompression
- X-band structure: energy compression and stabilization

Enables sub-per-mile level of energy spread and stability

The Plasma Injector: LPA optimization at 6 GeV Bayesian optimization [1] with FBPIC [2] and Optimas [3]

LUX-like plasma profile: with HOFI channel (w_m = 50 µm)

- Variable density. (~ 2×10^{17} cm⁻³)
- Variable dopant concentration.
- Variable plateau length.

• Laser pulse (flattened Gaussian N = 100) w0 = 50 μ m, τ = 53.3 fs.

- Variable energy.
- Variable focal position.

Score function definition:

- goal momentum: $p_{z,0} = 6 \text{ GeV/c}$
- average deviation: $\hat{\sigma}_{p_{z,0}}^2 = \hat{\sigma}_{p_z}^2 + (\bar{p}_z/p_{z,0} 1)^2$
- score function: $f = -\sqrt{Q}/\hat{\sigma}_{p_{z,0}}/E_{laser}^2$

[1] S. Jalas et al. <u>Phys. Rev. Lett. 126, 104801</u> (2021)

[2] R. Lehe et al. <u>Comp. Phys. Comm. 203, 66</u> (2016)

[3] A. Ferran Pousa et al. <u>Phys. Rev. Accel. Beams 26, 084601</u> (2023)

The Plasma Injector: LPA optimization at 6 GeV Bayesian optimization [1] with FBPIC [2] and Optimas [3]

LUX-like plasma profile: with HOFI channel (w_m = 50 µm)

- Variable density. (~ 2×10^{17} cm⁻³)
- Variable dopant concentration.
- Variable plateau length.

• Laser pulse (flattened Gaussian N = 100) w0 = 50 μ m, τ = 53.3 fs.

- Variable energy.
- Variable focal position.

Score function definition:

Optimize for beams with narrow and dense spectrum peaking at 6 GeV, favoring a reduced laser energy.

[1] S. Jalas et al. <u>Phys. Rev. Lett. 126, 104801</u> (2021)

[2] R. Lehe et al. <u>Comp. Phys. Comm. 203, 66</u> (2016)

[3] A. Ferran Pousa et al. <u>Phys. Rev. Accel. Beams 26, 084601</u> (2023)

The Plasma Injector: LPA optimization at 6 GeV Working point 1: optimal case for 50 µm guiding channel

Laser pulse

- Realistic profile: Flattened Gaussian $a_0 = 2.02, w_0 = 50 \mu m, P_0 = 345 TW, T = 53 fs (fwhm), Energy = 19.6 J.$
- Focal length = 8.8 m.

Plasma target

- LUX-type profile: $n_p = 2.02 \times 10^{17} \text{ cm}^{-3}$, plateau length: 22 cm.
- Transversely parabolic profile with $w_M = 50 \ \mu m_{,.}$ (HOFI compatible)

The Plasma Injector: LPA optimization at 6 GeV Working point 1: optimal case for 50 µm guiding channel

Laser and Wakefield evolution

- Drive laser dynamics: damped oscillations, pulse edging, power amplification, depletion and dephasing.
- Evolving wakefield → average beam-loading

The Plasma Injector: LPA optimization at 6 GeV Working point 1: optimal case for 50 µm guiding channel

Electron beam

- Optimization: averaged beam-loading (no chirp).
- Charge: 87 pC, Energy spread: 0.5 %.
- Norm. emittance: 4.6 µm and 1.7 µm.
- Divergence: 0.22 mrad and 0.12 mrad.
- Efficiency: 2.7 %

The Plasma Injector: beamline simulation Working point 1: beamline simulation (ocelot)

The Plasma Injector: beamline simulation Working point 1: beamline simulation (ocelot)

The Plasma Injector: beamline simulation Working point 1: beamline simulation (ocelot)

Surrogate modeling of key beam parameters **Modeling beam response to jitters for S2E simulation studies**

Jitter and tolerance analysis

- Evaluate the combined influence of laser and plasma jitter on the beam parameters.
- Gaussian process models trained with 500 simulations sampled around working point.
- Varying parameters: Focus position, laser energy & plasma density.
- Allows us to define required laser and target stability to reach desired LPA performance.

DESY. | Plasma Injector for PETRA IV: CDR | 28.08.23 FLS23 Workshop Lucerne | A. Martinez de la Ossa

Jitters : {0.75 mm in z_{foc} , 0.75% in E_L , 0.75% in n_p }

The Plasma Injector: simulation framework

Start-to-end simulations with realistic jitter

DESY. | Plasma Injector for PETRA IV: CDR | 28.08.23 FLS23 Workshop Lucerne | A. Martinez de la Ossa

Introduced in OCELOT

The Plasma Injector: simulation framework

Start-to-end simulations with realistic jitter

The Plasma Injector: simulation framework

Start-to-end simulations with realistic jitter

DESY. | Plasma Injector for PETRA IV: CDR | 28.08.23 FLS23 Workshop Lucerne | A. Martinez de la Ossa

Collective beam parameters

Parameter	After LPA	After ECB
Charge	87 pC	84 pC
Charge spread	9.8 %	10.0 %
Energy	5.999 GeV	6.000 GeV
Energy spread	1.0 %	0.04%
Emittance (x, y)	0.4, 0.2 nm	0.4, 0.6 nm

The Plasma Injector: injection into PETRA IV **PETRA IV tracking with ELEGANT** Optimal beam

DESY. | Plasma Injector for PETRA IV: CDR | 28.08.23 FLS23 Workshop Lucerne | A. Martinez de la Ossa

- Simulation for 8000 turns (3 x damping time)
- No particle losses.

The Plasma Injector: injection into PETRA IV **PETRA IV tracking with ELEGANT** Optimal beam

DESY. | Plasma Injector for PETRA IV: CDR | 28.08.23 FLS23 Workshop Lucerne | A. Martinez de la Ossa

- Simulation for 8000 turns (3 x damping time)
- No particle losses.

The Plasma Injector: injection into PETRA IV **PETRA IV tracking with ELEGANT** All jitter sources at "two-sigma"

DESY. | Plasma Injector for PETRA IV: CDR | 28.08.23 FLS23 Workshop Lucerne | A. Martinez de la Ossa

- Simulation for 8000 turns (3 x damping time)
- No particle losses.

The Plasma Injector: injection into PETRA IV **PETRA IV tracking with ELEGANT**

DESY. | Plasma Injector for PETRA IV: CDR | 28.08.23 FLS23 Workshop Lucerne | A. Martinez de la Ossa

All jitter sources at "two-sigma"

- Simulation for 8000 turns (3 x damping time)
- No particle losses.

The Plasma Injector: operational requirements Filling the ring from scratch requires high repetition rate

Operational requirements

For a plasma injector shot charge: ~80 pC.

Repetition rate			
Operation mode	Brightness	Timing	
Initial filling	<mark>> 32 Hz</mark>	> 14 Hz	
Top-up	> 0.5 Hz	> 0.4 Hz	

TABLE VI. Operational injection parameters of the plasma injector in Brightness and Timing modes.

Beam mode	Brightness	Timing
Number of bunches	1920	80
Bunch charge / nC	0.8	8.0
Total charge / nC	1536	640
	Initial filling	
Shot charge / pC	80	80
Injection frequency / Hz	32	32
Number of shots	19200	8000
Filling time / s	600	250
	Top up	
Shot charge / pC	80	80
Top-up period / s	360	180
Number of shots	192	80
	High rep.	
Injection frequency / Hz	32	32
Top-up time / s	6	2.5
Duty cycle	1/60	1/72
	Low rep.	
Injection frequency / Hz	5	5
Top-up time / s	38	16
Duty cycle	1/10	1/10

The Plasma Injector: operational performance Simulating operation for PETRA IV

Bunch charge variations

- Injector shot charge fluctuations (jitters) results in PETRA IV bunch charge variations.
- Ring operation "simulation": filling and top up for different shot charge jitters: 0%, 5% and 10%
- Sizeable bunch variations in Brightness mode even for a non-fluctuating short charge.
- Performance of the plasma injector in terms of bunch charge fluctuation does not differ significantly w.r.t. conventional.

The Plasma Injector: operational performance Simulating operation for PETRA IV

Bunch charge variations

- Injector shot charge fluctuations (jitters) results in PETRA IV bunch charge variations.
- Ring operation "simulation": filling and top up for different shot charge jitters: 0%, 5% and 10%
- Sizeable bunch variations in Brightness mode even for a non-fluctuating short charge.
- Performance of the plasma injector in terms of bunch charge fluctuation does not differ significantly w.r.t. conventional.

The Plasma Injector: power consumption A substantial reduction of the energetic footprint is expected

LPA power consumption

- Maximum beam power (Brightness): $6 \text{ GeV} \times 2.6 \text{ nC/s} = \frac{15.6 \text{ W}}{15.6 \text{ W}}$
- The laser power is given by the efficiency: wall-plug-to-laser × laser-to-beam
- WP1: average laser-to-beam efficiency 2.6%. Optical power: 600 W
- Diode-pumped laser: Wall-plug efficiency 1%.
- Electrical laser power: 15.6 W / (0.026%) = 60 kW

Beamline power consumption

- Based on reported experience with LUX, FLASH and ARES.

LPA power consumption			
Laser type	Flashlamp	Diode	
Operation	Top-up	Full	
Wall-plug eff.	0.1%	1 %	
Pulse energy	20 J	20 J	
Rep. rate	5 Hz	30 Hz	
Electric power	100 kW	60 kW	
Cooling	60 kW	40 kW	

Diode-pumped technology is key to deliver a competitive, energy-saving alternative.

The Plasma Injector: power consumption A substantial reduction of the energetic footprint is expected

LPA power consumption

- Maximum beam power (Brightness): $6 \text{ GeV} \times 2.6 \text{ nC/s} = \frac{15.6 \text{ W}}{15.6 \text{ W}}$
- The laser power is given by the efficiency: wall-plug-to-laser × laser-to-beam
- WP1: average laser-to-beam efficiency 2.6%. Optical power: 600 W
- Diode-pumped laser: Wall-plug efficiency 1%.
- Electrical laser power: 15.6 W / (0.026%) = 60 kW

Beamline power consumption

- Based on reported experience with LUX, FLASH and ARES.

TABLE VII. Average power consumption of the plasma injector when filling the PETRA IV storage ring at 32 Hz with a diode-pumped laser system.

Total	$245~\mathrm{kW}$
Miscellaneous	10 kW
Vacuum system	20 kW
Magnet & RF cooling	$15 \mathrm{~kW}$
RF system	40 kW
Magnets	$60 \mathrm{kW}$
Laser cooling	40 kW
Laser system	$60 \mathrm{kW}$

The Plasma Injector for PETRA IV

Technical Design Phase Roadmap

DESY. | Plasma Injector for PETRA IV: CDR | 28.08.23 FLS23 Workshop Lucerne | A. Martinez de la Ossa

The Plasma Injector for PETRA IV: CDR **Summary and outlook**

- Conceptual design
 - State-of-the-art LPA: 6 GeV 1% spread and deviations, all jitters included.
 - Novel ECB with X-band RF: 6 GeV 0.04%, maximizing charge stability and throughput.
 - Compact solution: < 50 m.
- Performance demonstrated through full S2E simulations
 - Operation with 80 pC (10% rms) does not differ significantly w.r.t. conventional.
 - Energy consumption at 32 Hz with diode-pumped Ti:Sa laser: 245 kW.
 - Factor 10 reduction w.r.t the conventional system for PETRA IV.

Outlook

- Phase 1: R&D phase: laser, plasma and beamline development.
- Phase 2: Top-up operation at <5 Hz with flashlamp-pumped KALDERA+ upgrade.

- Phase 3: Full PETRA IV operation at ~30 Hz with a diode-pumped KALDERA++ upgrade.

