A Review on Injection Schemes

Masamitsu Aiba, PSI Workshop on Future Light Sources 2023 28.08.2023 Lucerne, Switzerland

Introduction

- Top-up operation mode has become standard for the third generation light source (3GLS)
- Challenges in 4GLS/MBA storage ring
 - Smaller physical/dynamic aperture
 - Smaller beam size (Transparency)
- New injection schemes and many variants have been studied and developed
- Top-up injection in 4GLS and the future machine?

Prerequisite for successful injection (1)

- Quality injection beam
 - Low emittance booster, or ideally a full-energy linac if affordable
 - Emittance manipulations [1] in the booster; no cost!
 - RF gymnastics to shorten the bunch?

Emittance equalization in ESRF booster [2]

(setting 1).

Figure 7: Beam size image with nominal booster setting Figure 8: Beam size image with maximum emittance reduction (setting 4).

[1] P. Kuske and F. Kramer, IPAC'16 [2] N. Carmignani et al., IPAC'18

[3] J. Kallestrup and M. Aiba, PRAB 23, 020701

Emittance exchange in SLS booster [3]

Prerequisite for successful injection (2)

- Thin septum
 - Two stage septum, "thick and thin", pioneered by ALS (and proton machines), is becoming a standard design for the new machine

Figure 2: Injection Septum Magnet Layout, Top View

Ref. D. Shuman et al., IPAC'2005

Prerequisite for successful injection (3)

- Twiss parameter at the septum
 - Larger beta function magnifies the dynamic aperture and makes the effective septum thickness thinner
 - SLS 2.0 injection straight
 - "Pseudosymmetry" to push the onenergy superperiodicity to the number of arcs
 - Beta function at the septum is increased while the phase advances along the straight are adjusted to the values that are common to all straights

A variety of injection schemes (1)

- Top-up injection scheme = Beam separation × Type of kicker
 - Example: Kicker-bump injection = Separation in real space × Dipole kickers
 - Injection beam has to be separated from the stored beam, at least, in one of 6 coordinates [x, x', y, y', t, p] at the time of injection (Liouville's theorem)
 - Various types of kicker are available (dipole, quadrupole, multipole, cavity, etc.)

Recent kicker development (1)

- In-vacuum nonlinear kicker at Soleil
 - Field peak close to the closed orbit (≈3.5 mm)

Ref: P. Alexandre, IPAC'23

Recent kicker development (2)

- Nano-second kicker
 - Low pulser voltage design for reliability

Parameter	Fast	Super-fast
Deflection type	Electromagnetic (TEM)	
Kicker type	Stripline (vacuum)	
Kicker section length	100 mm	
Number of sections	8	
Maximum deflection	0.5 mrad	1.0 mrad
Magnetic field	2.8 mT	5.7 mT
Electric field	0.9 MV/m	1.7 MV/m
Electrode voltage	$\pm 4.3 \text{ kV}$	$\pm 8.5 \text{ kV}$
Electrode current	±85 A	$\pm 170 A$
Excitation pulse length	<30 ns	~1 ns
Odd / Even el. impedance	$2x~50.0~\Omega$ / $2x~56.0~\Omega$	

Ref: M. Paraliev et al., IPAC'21

Additional kicker

- Additional kickers to compensate for a bump non-closure at SPring-8 [1]
- In general, a second kicker at the right betatron phase could compensate for the disturbance due to the injection kicker

Transverse deflecting cavities, an injection kicker + an additional kicker [2]

[1] C. Mitsuda, TWIIS workshop 2017[2] J. Kim et al., PRAB 22 011601

FIG. 2. Schematics for the working principle of on-axis injection with two deflecting cavities. (a)-(b) The second TDC kicks the injected beam on-axis. (c) The two TDCs crab and uncrab the stored beam (circulating bunch).

Where are we going?

Kicker-bump injection	Multipole/Nonlinear kicker	Swap-out	(Aperture sharing, Long. Inj.)
Most 3GLS ESRF-EBS ELETTRA II etc.	MAX IV Sirius Soleil II etc.	ALS-U APS-U HEPS etc.	SLS 2.0 Diamond II PETRA IV etc.

The optimum injection scheme may depend on each storage ring as well as the demands of the beamline users

* Free images from pixabay.com

Short nulse kicker

Collective effect during injection

- High bunch current operation modes
 - Even though the instability itself is stable, transient effects can lead to a beam loss

R. Lindberg, M. Borland and A. Blednykh, NAPAC'2016

Figure 1: Horizontal phase space plots of the stored bunch after a top-up shot at Pass 0.

Direct generation??

- Electron beam can be generated within the storage ring with the laser wake plasma?
 - The beam parameters are almost compatible with the storage ring acceptance; transverse emittance of a few mm.mrad and energy spread of several %
 - Beam charge reproduciability is not very important

Totally unfeasible or our future option?

Summary

- New injection schemes and many variants have been studied and developed in the scope of 4GLS
- Technology is (getting) ready for new schemes
 - One can select "optimum scheme", which is compatible with the designed storage ring and the demands of the users
 - Multiple implementation may be considered (e.g. SLS 2.0 Kicker bump and Aperture sharing)
- Not all possibilities have yet been explored