Obtaining picosecond x-ray pulses on fourth generation synchrotron light sources

FLS'23 Workshop, Ring working group August 28, 2023

Xiaobiao Huang¹, James Safranek¹, Alexander Zholents²

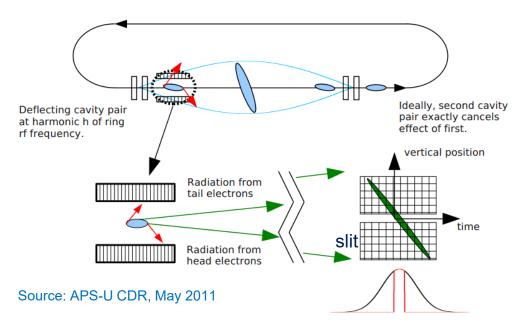
¹SLAC National Accelerator Laboratory

²Argonne National Laboratory

Outline

- The 2-frequency crab cavity (2FCC) scheme a brief review
- 2FCC for fourth generation synchrotron light sources
 - Emittance growth, momentum compaction, vertical tune and deflecting voltage
 - Emittance growth for tilted, elongated bunches
 - Half-integer fractional harmonic cavity for simultaneous lengthening and shortening

Application to APS-U


- Configuration and parameters
- Short-pulse performance
- Injection and lifetime

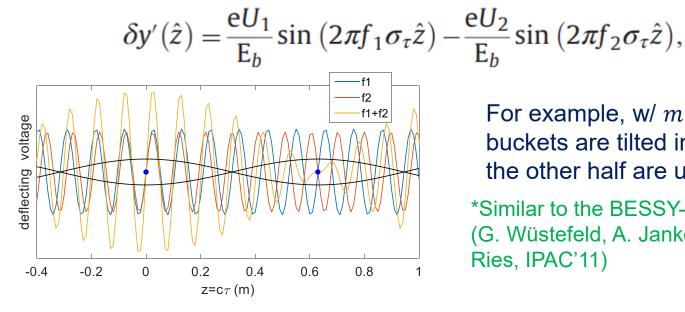
Summary

"Crabbing" the beam for short pulses in storage rings

• The tilt-and-cancel scheme

A. Zholents, P. Heimann, M. Zolotorev, and J. Byrd, NIM A 425, 385 (1999).

- The ID is $180^{\circ} \times n_1$ downstream from crab cavity in vertical phase advance; radiation will have a maximum y' z correlation, which translates to y z correlation at a downstream slit.
- A second crab cavity is $180^{\circ} \times n_2$ downstream from the first crab cavity to cancel the tilt.


The two-frequency crab cavity (2FCC) scheme

Use crab cavities of two frequencies*,

A. Zholents, NIMA 798, 111 (2015)

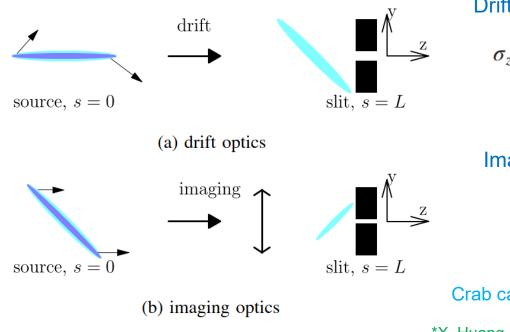
$$f_1 = h f_{RF}$$
$$f_2 = \frac{hm \pm 1}{m} f_{RF}.$$

The deflecting kicks cancel for some bunches

For example, w/ m = 2, half of the buckets are tilted in y - z plane, the other half are un-affected.

*Similar to the BESSY-VSR scheme (G. Wüstefeld, A. Jankowiak, J. Knobloch, M. Ries, IPAC'11)

A 2FCC study for SPEAR3


• Application of the 2FCC scheme has been seriously studied for SPEAR3

-
-
-
14
0
5

Short pulse performance estimate

 Two types of optics to take advantage of tilted distribution to produce short pulses

- Potentially hybrid optics
- Theoretical prediction of minimum pulse duration*

Drift optics – good for large y'-z slope

$$\sigma_{z,\min} = \frac{2\sin \pi \nu_y}{\epsilon \sqrt{1 + \beta_y^2/L^2}} \sqrt{\frac{\epsilon_y}{\beta_2} + \frac{\beta_y}{\beta_2}} \sigma_{\theta}^2$$

Imaging optics – good for large y-z slope

$$\sigma_{z,\min} = \frac{2\sin \pi \nu_y}{\epsilon} \sqrt{\frac{\epsilon_y}{\beta_2} + \frac{\sigma_r^2}{\beta_2 \beta_y}}$$

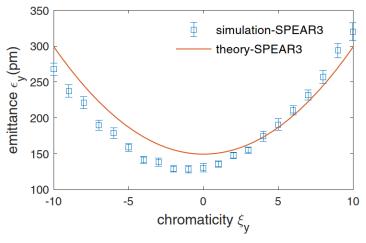
Crab cavity coupling coefficient $\epsilon = \frac{e(k_1V_1 + k_2V_2)}{E_0}$

*X. Huang, et al, PRAB 22, 090703 (2019)

Emittance growth from tilted distribution

- An unexpected discovery was that the tilted beam distribution in dipoles cause a vertical emittance growth
 - Significantly impact tune choice for 3rd generation rings

X. Huang (SLAC), FLS23 Ring WG, 8/28/2023


Nonlinear dependence of emittance on chromaticity!

- Additionally, the vertical emittance depends on the chromaticity
 - The nonlinear coupling of y-z motion through chromaticity cause additional excitation when electrons emit photons.
 - The nonlinear coupling is analytically studied and the emittance growth is predictable.

$$\begin{split} H &= \mu_y J_y(y, p_y) + \mu_z J_z(z, \delta) + \chi \delta_D(\theta - \theta_0) yz \\ &+ 2\pi \xi_y J_y(y, p_y) \delta, \end{split}$$

$$\begin{aligned} \langle \mathcal{H}_c \rangle = & \frac{\beta_y \chi^2 \bar{\eta}^2}{48} \csc^4 \pi \nu_y (2 + \cos 2\pi \nu_y) \\ &+ \xi_y^2 \frac{\beta_y \chi^2 \pi^2 \sigma_\delta^2}{360} (120\beta_z^2 - 299\bar{\eta}^2) \\ &+ 15\bar{\eta}^2 \csc^2 \pi \nu_y (7 + 30 \csc^2 \pi \nu_y)) \csc^2 \pi \nu_y \end{aligned}$$

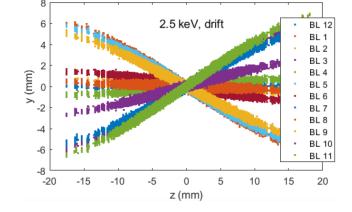
(See our poster on Wednesday WE4P25)

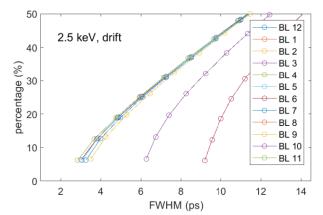
J. Tang, X. Huang, PRAB 25, 074002 (2022)

X. Huang (SLAC), FLS23 Ring WG, 8/28/2023

2FCC for 4th generation synchrotron light sources

How does the 2FCC apply to MBA-based low emittance rings?


- Study for Elettra-2 showed that it is quite feasible


TABLE X The FWHM pulse duration for the drift optics case, assuming a photon energy of 2.5 keV.

Beamline	fwhm/5%	$\rm fwhm/10\%$	$\rm fwhm/15\%$	$\rm fwhm/20\%$
Sector	(ps)	(ps)	(ps)	(ps)
12	29.16	29.13	29.07	28.90
1	2.89	3.44	4.18	5.02
2	21.01	21.02	21.17	21.21
3	2.92	3.45	4.18	5.04
4	15.41	15.51	15.62	15.81
5	2.96	3.49	4.20	5.05
6	9.12	9.43	9.74	10.13
7	3.16	3.65	4.33	5.16
8	25.52	25.26	25.37	25.44
9	3.38	3.84	4.52	5.32
10	6.23	6.48	6.90	7.44
11	2.75	3.29	4.08	4.96

With deflecting voltage $V_1 = 0.8$ MV

X. Huang, A. Zholents, "Feasibility study for a production of picosecond x-ray pulses at Elettra-2", unpublished report (2019)

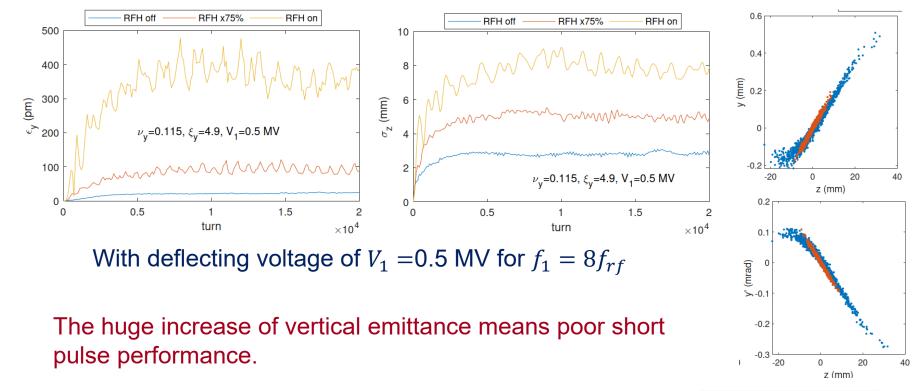
X. Huang (SLAC), FLS23 Ring WG, 8/28/2023

An advantage of 4G rings for 2FCC

- The low momentum compaction that comes along with low emittance reduces the crab cavity-induced emittance growth
 - A dominant effect in 3G rings goes away by itself.
 - Example: APS-U has $C\alpha_c = 0.0446$ m, while SPEAR3 has $C\alpha_c = 0.380$ m
 - This frees up the choice of vertical tune, and has an additional benefit: lower vertical tune corresponds to larger tilting slopes.

Slope in *y*-*z*:*
$$\frac{dy}{dz} = C_{11}$$

Slope in *y*'-*z*: $\frac{dy'}{dz} = C_{21}$
 $C_{11} = \epsilon \frac{\sqrt{\beta_1 \beta_2}}{2 \sin \pi \nu_y} \cos(\pi \nu_y - \Psi_{12})$
 $C_{21} = \epsilon \frac{\sqrt{\beta_2 / \beta_1}}{2 \sin \pi \nu_y} [\sin(\pi \nu_y - \Psi_{12}) - \alpha_1 \cos(\pi \nu_y - \Psi_{12})]$

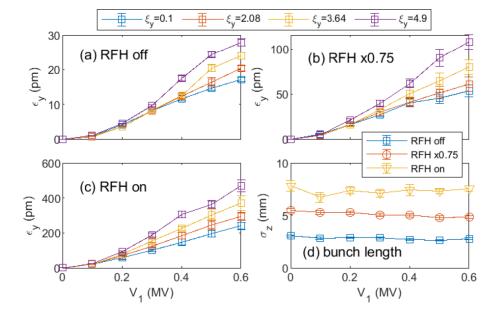

As we choose lower fraction tune for the vertical plane, the required deflecting voltage is smaller. This helps crab cavity design and operation.

*X. Huang, PRAB 19, 024001 (2016)

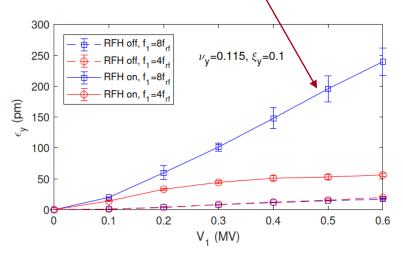
An issue of 4G rings for 2FCC

- The tilted bunch gets a substantially larger emittance increase when it is lengthened by harmonic cavity
 - An unexpected discovery as we apply 2FCC for APS-U (41pm lattice*) *M. Borland et al, NAPAC'16

APS-U harmonic cavity (RFH): 4th harmonic, voltage $V_h = 0.866$ MV to cancel focusing slope


RFH on

RFH off

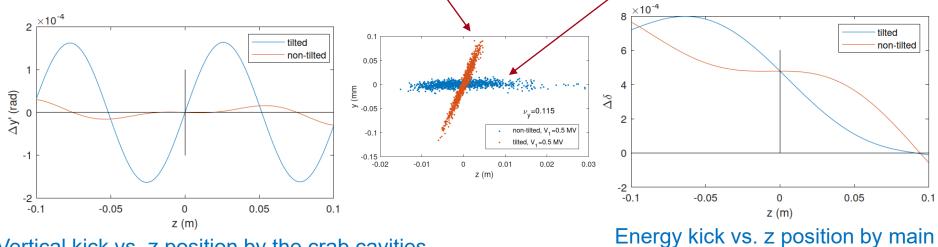

11

What are causing the extra emittance growth?

- Is it the chromaticity effect?
 - Only partially. It has an effect, but doesn't explain all.
- The crab cavity waveform curvature seems to be the main culprit – changing crabbing frequency makes a big difference.

Emittance vs. V_1 for 3 RFH settings w/ 4 levels of vertical chromaticity

Emittance vs. V1 (8th harmonic) for $f_1 = 8f_{rf}$ and $f_1 = 4f_{rf}$ (w/ double V1 for equal deflecting slope)

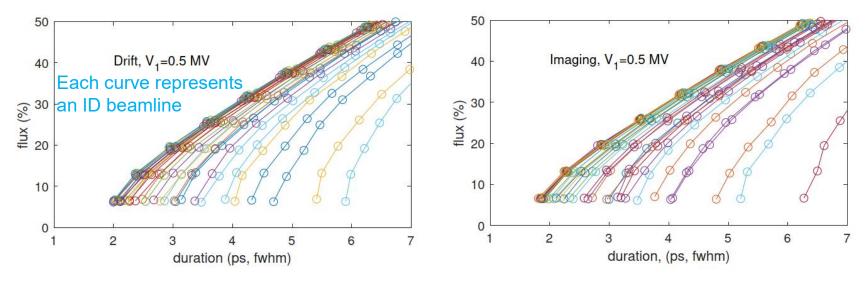

X. Huang (SLAC), FLS23 Ring WG, 8/28/2023

- A half harmonic cavity, with frequency $f = \left(n + \frac{1}{2}\right) f_{rf}$, can cancel the focusing slope for half of buckets, while doubling the slope for the other half
 - Similar to BESSY-VSR and 2FCC itself
 - Doubling the focusing slope helps increasing the charge density, good for short pulse performance
 - Only one frequency is needed, just trade the usual integer harmonic for one with half-integer frequency
 - It may benefit timing users even without using crab cavities bunches that are much shorter can co-exist with regular beams

APS-U already has a 4th harmonic bunch lengthening cavity (M. Kelly et al, IPAC'15). We assume a cavity with $f = 4.5 f_{rf}$ for APS-U for illustration purpose.

Application to APS-U: system layout

- Crab cavities: $f_1 = 8f_{rf}$, $f_2 = 8.5f_{rf}$, $V_2 = 0.967V_1$
 - Arranged in one straight section symmetrically as required to cancel position kick X. Huang, et al, PRAB 22, 090703 (2019)
- RFH: $f_{rfh} = 4.5 f_{rf}$, $V_{rfh} = 0.770$ MV (w/ $V_{rf} = 4.5$ MV)
- Two types of buckets: (tilted, shortened) and (non-tilted, lengthened)

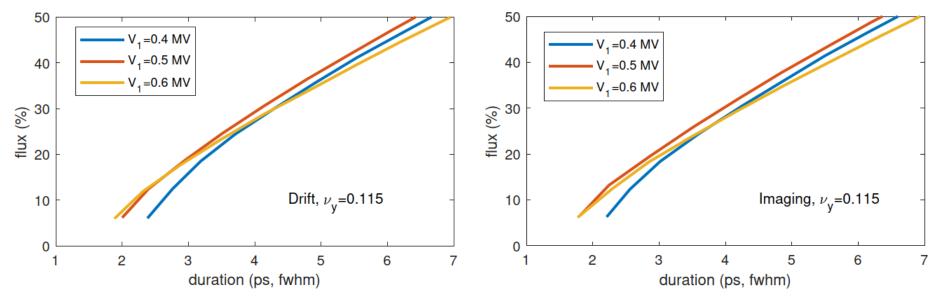


Vertical kick vs. z position by the crab cavities

RF and RFH

Short pulse performance

 Simulation is performed to predict the short pulse performance Including a 20% linear coupling (needed for non-tilted beam)


Minimum pulse duration in good agreement with analytic prediction

- Drift optics: 2.0 ps (FWHM) for 6% flux, minimum predicted to be 1.89 ps
- Imaging optics: 1.8 ps (FWHM) for 6% flux, minimum predicted to be 1.73 ps

Dipole beamline can only use imaging optics (dominated by single photon divergence), which produce similar performance as ID beamlines.

Optimal deflecting voltage

- As large deflecting voltage increases emittance, it is not always helpful for it to go larger
 - If crab cavity induced emittance is the only source, the minimum duration would be independent deflecting voltage
 X. Huang, PRAB 19, 024001 (2016)

 $V_1 = 0.5$ MV seems to be an optimal deflecting voltage for the APS-U case (w/ given vertical tune). This would change if the tune, photon property, or linear coupling change.

0.04

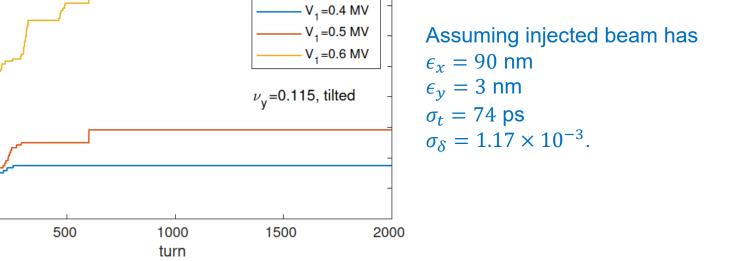
0.035

0.03

0.025

0.01

0.005

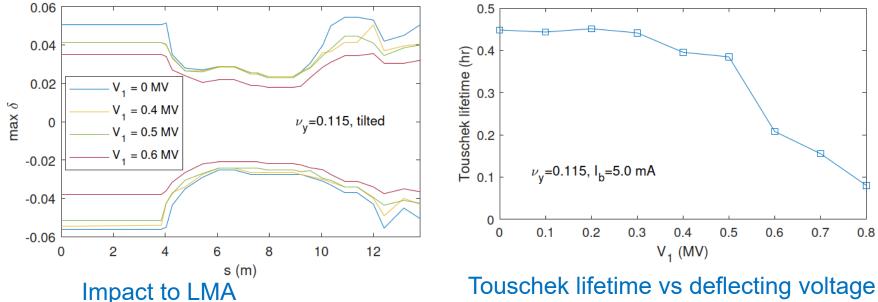

0

0

0.025 0.02 0.02 0.015

Injection into tilted bunches

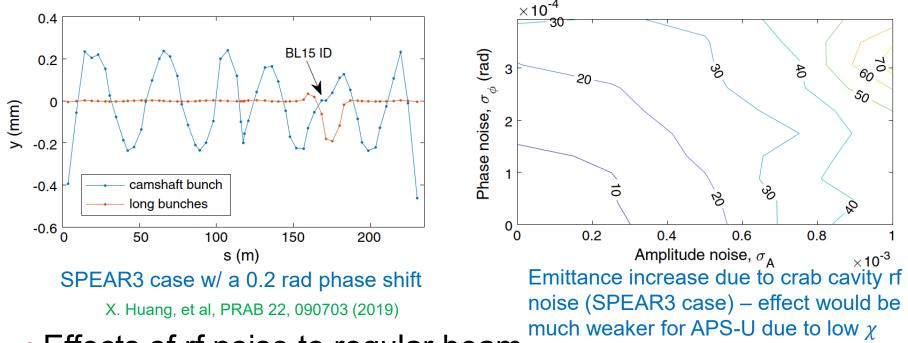
- The crab cavities can affect injection performance as injected bunch is usually long
 - Some particles will see the peak of deflecting waveforms


Simulation shows that the injection loss is acceptable

Impact to LMA

Emittance growth w/ V1 helps Touschek lifetime

Touschek lifetime

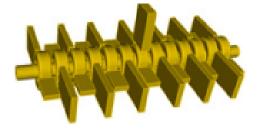

- Similarly Touschek lifetime could suffer
 - Touschek particles will drift to large z-position and see vertical kicks
- Simulation can reveal the impact to local momentum aperture.

Some other operational aspects

Separation of long and short pulses

- By shifting crab cavity phases to produce two closed-orbits

- Effects of rf noise to regular beam
 - Amplitude and phase noise of crab cavities can excite vertical emittance of non-tilted beam


These and other operational issues have not been studied for the APS-U case.

X. Huang (SLAC), FLS23 Ring WG, 8/28/2023

A design of normal-conducting crab cavity design

- During the SPEAR3 2FCC study, a normal-conducting design was completed
 - Meeting the space and deflecting voltage requirements (2 MV total in one 4-m straight section)
 - Meeting other requirements (heat load, impedance, et al)

Frequencies: 2858 GHz and 3096 GHz Deflecting voltages: 1 MV and 0.93 MV

A 13-cell structure w/ HOM and FPC couplers

Parameter	Value	Unit
Beam aperture	20	mm
Number of cell per structure	13	
Structure length	0.65	m
Number of structures	4	
Total length	2.65	m
Shunt impedance	21	$M\Omega/m$
Sextupole field K_2L	0.05	$1/m^2$
Kick factor k_d (for $\sigma_z = 5$ mm)	1300	V/pC/m
RF power required	<40	kW/frequency

Table 2: NC Crab Cavity Parameters

The APS-U 2FCC scheme only needs half of the deflecting voltage.

Z. Li, et al, IPAC'17 (2017)

X. Huang (SLAC), APS-AOP meeting, 8/23/2023

SL AC

- The 2FCC scheme is promising for producing short pulses in storage rings
- It has advantages and challenges when applied to MBAbased low emittance rings
- The half-integer fractional harmonic cavity approach turns a challenge into a benefit
- A case study with APS-U shows that good short pulse performance can be achieved with a weak deflecting voltage
 - Minimum pulse duration of 2 ps (FWHM), 50% flux for less than 7 ps (FWHM)
- Impact to injection and Touschek lifetime is acceptable