

Thomas Schietinger :: Paul Scherrer Institute

for the SwissFEL team

SwissFEL Status and Plans

67th ICFA Advanced Beam Dynamics Workshop on Future Light Sources, 28 August 2023

- SwissFEL in a nutshell
 - Key systems
 - Experimental stations
 - Timeline
- Operation and performance in 2022/23
- Recent experimental highlight
- Status of special FEL modes
- Athos seed laser upgrade (EEHG)
- Outlook:
 - Mid-term improvements
 - Long-term upgrade: Porthos beamline

Linac:

Pulse duration : 1–20 fs Electron energy : up to 6.2 GeV Electron bunch charge: 10–200 pC Repetition rate: 100 Hz, 2 bunches

Aramis:

Hard X-ray FEL, $\lambda = 0.1-0.7$ nm

Linear polarization, in-vacuum, variable-gap undulators First users 2018

Electron source

- RF gun:
 - 2.6-cell S-band gun
 - 100 MV/m (57 MV/m at emission)
 - Cs₂Te coated Cu cathode

• Gun laser systems:

- Two identical solid state
 Yb:CaF₂ chirped pulsed
 amplifier with excellent
 stability and uptime.
- Cs₂Te cathode installed since 2019 with stable performance

Linear accelerator

- S-band booster:
- 6 S-band cavities (3.0 GHz)
- 80 MeV per cavity (20 MV/m)
- C-band linac:
 - 27 C-band modules (5.7 GHz)
- Four 2-m cavities per module
- Barrel Open Cavity (BOC) RF pulse compressors
- 240 MeV per station (30 MV/m)

Undulators

- Hard X-ray (Aramis U15):
 - 13 modules, each 4 m long
 - Planar in-vacuum design
 - 265 × 15 mm periods
 - NdFeB magnets, CoFe poles, 1.3 T

• Soft X-ray (Athos U38):

- 16 modules, each 2 m long
- Apple-X design
- 50 × 38 mm periods
- SmCo magnets, 1.1 T
- Magnetic chicanes between modules ("CHIC")

Transverse deflecting cavities for Athos

200

60 dec

200

105 deg

200

165 dea

400

400

- Two X-band transverse deflecting RF cavities installed for post-undulator diagnostics in Athos
- Available since June 2022 (last major component of the SwissFEL baseline design!)

100

150

100

150

50

100

150

50

100

150

400

- Resolution below 1 fs demonstrated. •
- Essential for setup of many Athos modes!

Horizontally streaked beam in vertically dispersive beam dump section: FEL power profile reconstruction!

Streaking at arbitrary angles

200

90 dec

200

150 dea

pixel

400

400

200 pixel SwissFEL Status, FLS 2023

SwissFEL timeline

SwissFEL Status, FLS 2023

SwissFEL Status, FLS 2023

PAUL SCHERRER INSTITUT

SwissFEL experiment highlight (also SACLA)

Outer

Inner seament

No. ALANA

Nucleus

Synaptic

body

seament

Alvra

nature

Article

Ultrafast structural changes direct the first molecular events of vision

https://doi.	.org/10.1038/s41586-023-05863-6
Received:	2 April 2022
Accepted:	17 February 2023
Published	online: 22 March 2023
Open acce	ss
Check f	for updates

Thomas Gruhl, Tobias Weinert¹²⁷, Matthew J. Rodrigues¹⁰⁷, Christopher J. Milne²³⁸, Giorgia Ortolani, Facrol Nasz, Firck Nango⁴⁵, Saumik Serv⁶⁷, Phillo J. M. Johnson⁴, Claudio Cirelli⁷, Antonia Furret¹³⁰, Sandra Mous²³¹, Petr Skopintsev¹³⁰, Daniel James¹³³, Florian Dworkowski¹⁰, Petra Báth³, Demet Keklill⁷, Dmitry Ozerov¹⁹, Rie Tanaka¹³⁴, Hannah Glover¹, Camila Baocellar³, Stoffen Brinle¹³⁴, Cecilia M. Casadel¹⁰, Aregilo D. Diethelm¹, Dardan Gash¹⁷, Guillaume Gotthard¹⁹, Ramon Guixé, González²³⁷, Yasumas Jol¹⁴, Victoria Kabanova¹⁶, Gregor Knopp², Elan Lesca²¹, Pikye Ma¹, Isabelle Martiel¹⁷, Jonas Mihle¹, Shigeki Owada¹⁸⁷, Filip Panula¹³⁸, Daniel Sarabi¹⁷, Konsuka Tono¹⁸, Przemysław Nogly¹⁶⁸⁸, Xavier Deupl¹⁶⁴, So Iwata¹⁸⁷, Richard Neutze³, Jerg Standfusz²⁵, Gebhard Scherle¹¹³⁸, Kaleire Panneels¹¹⁸

Inside the rod cells (outer segment):

Aramis advanced modes – overview

Short pulses ✓ (beam tilt)

"Attosecond" pulses ✓ (three-stage compression)

Large bandwidth mode 🗸

(large energy chirp from linac wakefields)

Large bandwidth mode with spatial chirp 🖌

(additional spatial chirp from dispersion in undulator)

✓ ready for experiments!

https://www.victorinox.com/ch/en/Products/Swiss-Army-Knives/ Small-Pocket-Knives/Classic-SD-Classic-Colors/p/0.6223.G

Thomas Schietinger (PSI)

SwissFEL Status, FLS 2023

Porthos user wish list...

Generation: Athos APPLE-X undulators

Measurement: cold target recoil ion spectroscopy at Maloja experiment (Athos)

Athos: short pulses with tilted beams

Athos: two-color fresh slice technique

- Generate two colors in two undulator segments with two (fresh) slices of the electron beam (with beam tilt)
- Wide tunability both in color and time separation.
- Separate polarizations for the two colors are possible.
- First demonstration in 2021.
- Now routinely used by experiments.

E. Prat et al., Phys. Rev. Res. 4 (2022) L022025 Example (Maloja, May 2023):

- Color 1: 531 eV (O), ~110 uJ
- Color 2: 405 eV (N), ~170 μJ

Multistage amplification (superradiance)

Athos: sub-fs pulses (nonlinear compression)

- Three-stage nonlinear compression of low-charge electron bunch (10 pC). Switchyard dogleg as third stage.
- Method similar to Aramis (energy collimator as third stage).
- Strong experimental interest to study coherent electron motion.
- A large fraction of the pulses (≥70%) are single spike.
- Paper submitted to Appl. Phys. Lett. Photonics

electron phase space after nonlinear compression:

SwissFEL Athos upgrades: HERO & EEHG

SwissFEL Athos upgrades: HERO & EEHG

Seeded modes (Athos)

Longitudinal phase space measurement with post-undulator X-band deflector

Enhanced SASE (ESASE)

- FEL seeding at 800 nm and 400 nm wavelength.
- Successful generation of attosecond FEL pulse train

Mode-locked lasing (MLL)

- Use intraundulator chicanes to propagate coherence between ESASE pulses.
- Was attempted (and may have been successful) but clean experimental verification of coherence not yet possible.

40

-20

-40

Echo-enabled harmonic generation (EEHG)

- The ultimate goal of the Athos seeding upgrade!
- Hardware ready for commissioning (2023/24)
- Seeding at 267 nm wave- [™]/₄
 length.

0.2

0.0

-0.2

∆*E/E* (%)

EEHG simulation (S. Reiche)

time

Porthos upgrade

- Preliminary plans for a third undulator line, dubbed "Porthos."
- Firmly anchored in the Swiss Photon Science Roadmap (published 2021)
- Science case still in preparation (international workshop in November). Likely photon energy range is 1–10 keV.
- Preproject period to develop undulator prototype and implement various accelerator improvements towards Porthos.

New Porthos experimental hall

Raum pespe new Porthos line (planned) $20 \times (3+1)$ m undulator modules Beam dump Space for RF and (already ≈100 m undulator line beam manipulation devices installed) (total.with large chicane) (active and/or passive) Thomas Schietinger (PSI) SwissFEL Status, FLS 2023 Page 33

Aramis line (in operation)

Special thanks to the whole SwissFEL team and to the expert groups!

SwissFEL contributions to FLS '23

Contributed Orals:

- Th. G. Lucas: A High Brightness Travelling-wave C-Band Photogun for a Brightness Upgrade to SwissFEL (WE3A6)
- G. Wang, E. Prat, S. Reiche, K. Schnorr: Progress on Fresh-slice Multi-stage Amplification at SwissFEL (TH2A3)

Posters:

- G. Wang, E. Prat, S. Reiche, K. Schnorr: Simulation Studies of Producing Attosecond-terawatt X-ray FEL Pulses Using Irregularly Spaced Current Peaks at SwissFEL (TU4P01)
- Ph. Dijkstal, P. Craievich, E. Prat, A. Malyzhenkov: Measurements of Dipole and Quadrupole Wakefields From Corrugated Structures at SwissFEL (TU4P02)