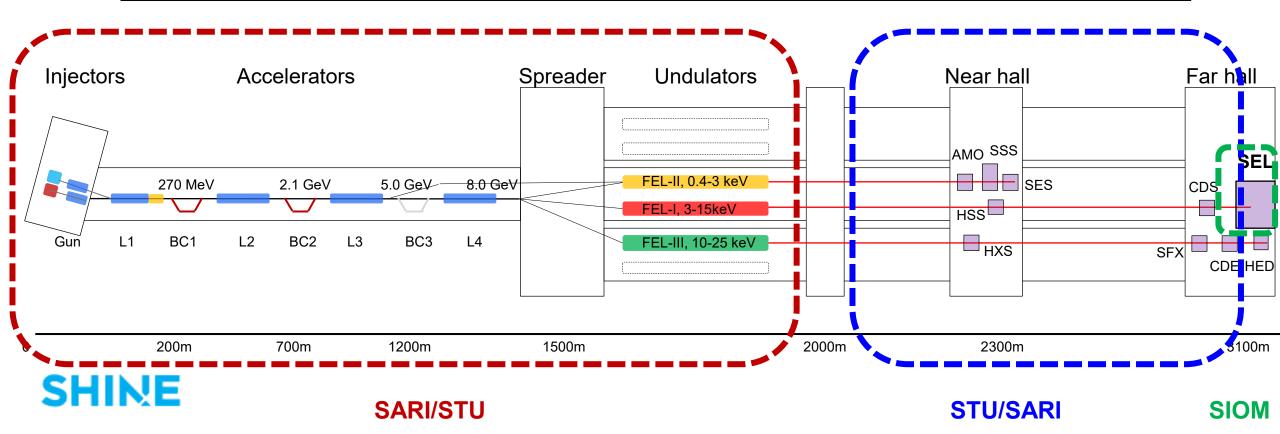
SHINE project update


Dong Wang for SHINE Project team (STU, SARI, SIOM)

Future Light Sources 2023, Lucerne, August 28

SHINE project in brief

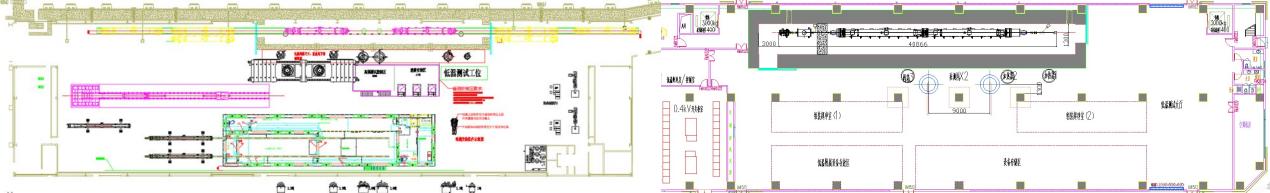
Civil construction:3.1km long, 5 shafts, 10 sectors of tunnels 30m undergroundAccelerator/FEL:8 GeV, cw, 1MHz beam rep-rate, 3 FEL undulator linesPhoton beamlines:one soft x-ray beamline, two hard x-ray beamlinesExperiment stations:10 end-stations for phase-I, including 100PW laser

SHINE: ~1.5B Euros cost, in 7 years

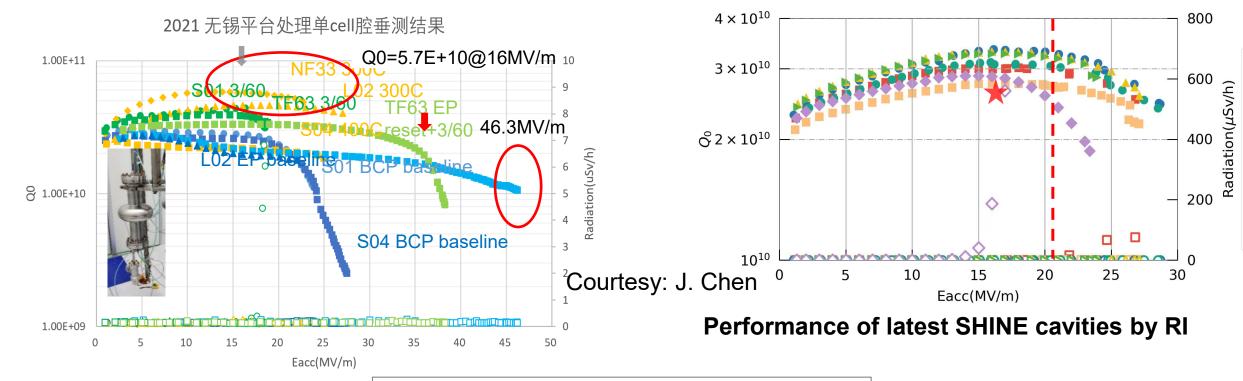
Year	2017	2018 2019	2020 2021	2022 2	2023 2024	2025 2026
Quarter	1 2 3 4 1	2 3 4 1 2 3	4 1 2 3 4 1 2 3 4	1 2 3 4 1	2 3 4 1 2 3	4 1 2 3 4 1 2 3 4
Civil construction	ground	SRF Hall	CP#1 F	Hall		
	undergr	Injector sh	aft & linac tunnel:	2023.03	Others	
Cryogenic system		1 <mark>kW@2K cryo</mark> l	plant for R&D			
			4kW @ 2K cryo-pla	ant #1: 2024	4.0 <mark>1 📌 CP</mark> #2	+ #3
Gun		217 MHz	VHF gun R&D: te	sted OK		
				delive	ert Inst.	
LINAC	High-Q cavity/module infrastructure/R&D					
				Mass pro	oduct./test/in	stall
					Li	nac ramp up
cw beam testbed			Insta	II. Comm	nis.	
Undulators		Undulator R&	D: 3 warm prototy	vpes OK S	SCU R&D	
				Mass prod	duction/instal	II SCO
SHINE commiss.						1 st Lasing 2025
	Shifting					

Civil constructions: shaft #1 area

Civil constructions: linac tunnel is handed over April


SHINE gun: 217MHz VHF gun(baseline) and more _____

SHINE SRF Infrastructure at Shanghai


1, supporting intense R&D for SRF techs needed for SHINE and future 2, capacity for 600 cavities VT, 75 modules assembly & HT in 2~3 years 3, beam test with gun + 1-2 modules

Cavity chemical processing is at Wux[®] 150 km from SHINE

SHINE new cavity R&D facility is really rewarding

SHINE new facility works great in finding various baking/doping recipes that are transferred to major vendors in China and Europe successfully. Both high Q and high gradients are achieved. Theoretical and experimental studies to explore mechanism and other new recipes.

Cryomodule assembly/test: SHINE + Industries

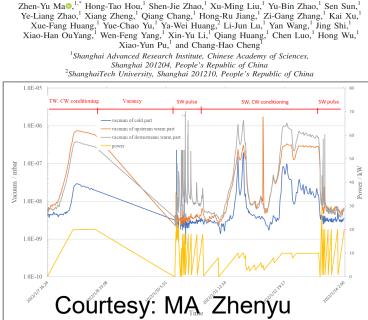
Three types of CMs are assembled and cooled down successfully. About 5 more standard CMs will be assembled/tested before series production starting 2024.

Industry team on SHINE site for module assembly/tests.

SHINE

Courtesy: YIN Lixin, LIU Yiyong, SUN Sen, ZHAO Shenjie et al

Fundamental Power Couplers


- 30 sets of 1.3 GHz FPC prototypes have been manufactured and power conditioned with 14-kW traveling wave (TW) and 7-kW standing wave (SW) in continuous-wave (CW) mode. Even higher power levels have been demonstrated with 20-kW TW and 10-kW SW, which indicates their robustness.
- 16 sets of 1.3 GHz FPC prototypes have been assembled into two cryomodules and been verified.
- □ Two 3.9 GHz FPC prototypes have been designed, manufactred and power conditioned with 2.2-kW TW and 2-kW SW in CW mode.

PHYSICAL REVIEW JOURNALS

Open Access Policies & Practices Frequently Asked Questions Tips for Authors Length Guideline FAQ Professional Conduct

PHYSICAL REVIEW ACCELERATORS AND BEAMS 25, 113501 (2022)

Manufacturing studies and rf test results of the 1.3 GHz fundamental power coupler prototypes

FPC on 1.3 GHz Cryomodule

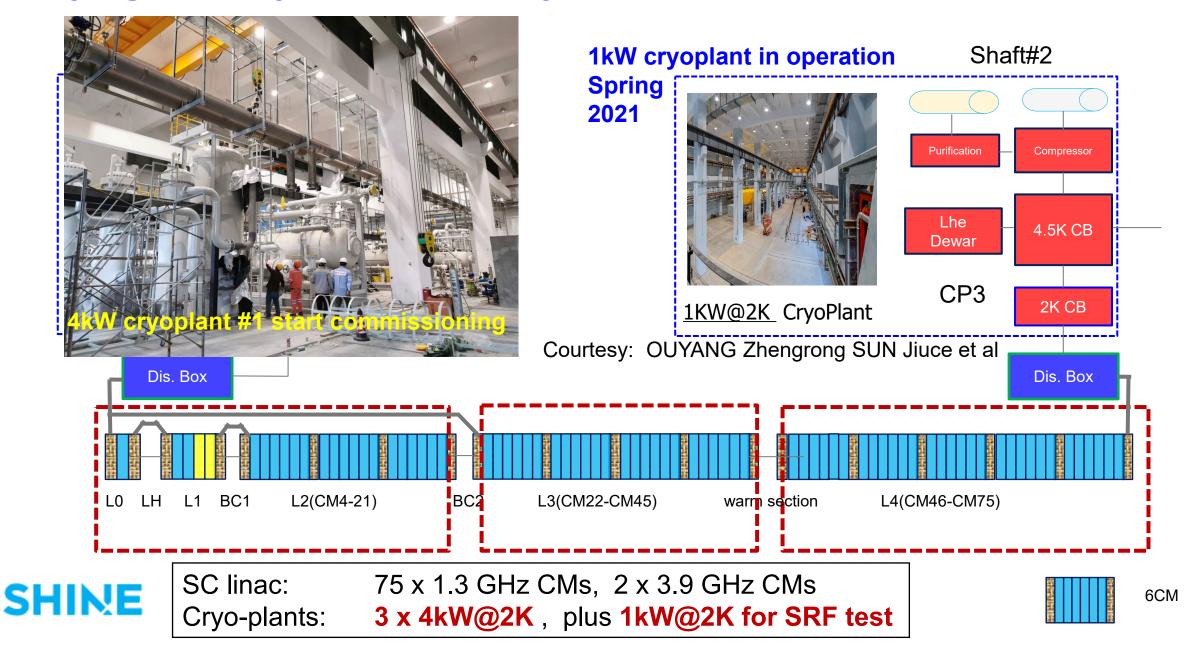
Solid State Amplifiers (SSA)

Courtesy: ZHAO Yubin

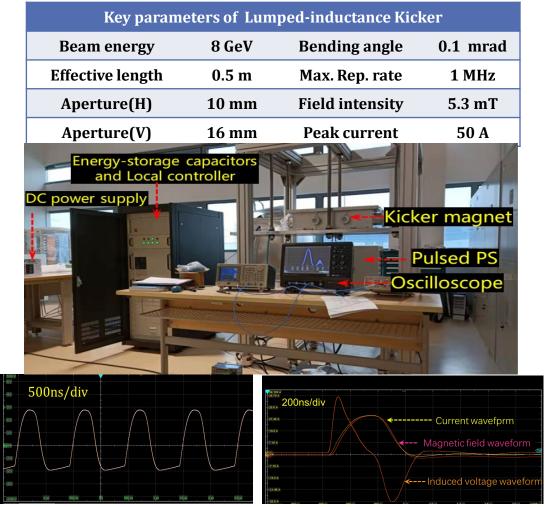
SHINE 1.3GHz SSA: 5.2 kW

- 100 uA beam at 16~20 MV/m with
 Qext = 4~6e7
- required to accelerate the beam (i.e., I_b×V_c)

SHINE


- input power required with no detuning or overhead
- input power with 10 Hz detuning
- source power for 10 Hz detuning
- overhead for transport losses and gradient regulation margin

	Requirement	Acceptance test result	
Frequency	1.3GHz	1.3GHz	
Delay of small signal	<300ns	44ns	
1 dB compression	5.2kW @0dBm	5.5kW	
Bandwidth(1dB)	1MHz	2MHz@0.1dB	
Phase noise	80dBc/Hz(10Hz offset @1.3GHz)	89dBc/Hz	
Amplitude stability	0.1% @ 1 second	<0.1%	
Phase stability	0.1° @ 1 second	<0.1°	
Spur	<-70dBc	<-70dBc	
Noise	<10 dB	2dB (90-88)	
Harmonic	<-30 dBc	dBc -38 dBc@5th	
Efficiency	>40% (at 5.2kW)	45%	



Cryogenic System for Cryomodules

SHINE fast kicker for beam switchyard

Lumped-inductance Kicker

Courtesy: GU Ming, LIU Yongfang Transmission-line Kicker.

Key para	Key parameters of Transmission-line Kicker							
Beam energy	8 GeV	Bending angle	0.1 mrad					
Effective length	0.8 m	Max. Rep. rate	1 MHz					
Aperture(H)	25 mm	Field intensity	3.3 mT					
Aperture(V)	25 mm	Peak current	67 A					
Ceramic beampipe	Φ15 mm	Kicker impedance	12.5 Ω					
Transmission-I Kicker	ine Matched resistance	Ceramic beampipe Kicker	Copper Capacitor PCB					
	2µs/div	$\land \land \land \land$	Current wavefor agnetic field wavefo uced voltage wavefo					

Two kinds of kicker prototypes are developed in SARI. Based on the advantages and disadvantages of the two prototypes and several compromises, lumped kicker, which is kept outside vacuum over a ceramic chamber, is chosen.

SHINE Warm Undulators : different types

Courtesy: ZHANG Wei

Conventional V-gap Undul.

All undulator are 4 m long. 26mm(FEL-I) and 55mm(FEL-II). Series production now

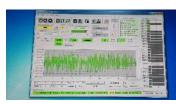
SHINE

H-gap Undulator

Anti-magnetic compensation. Stackable, up to 3 layers, Can work as EPU

Elliptical Polar. Undulator

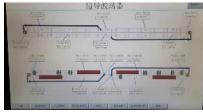
Anti-magnetic compensations in all dimensions.


Ready for mass productions

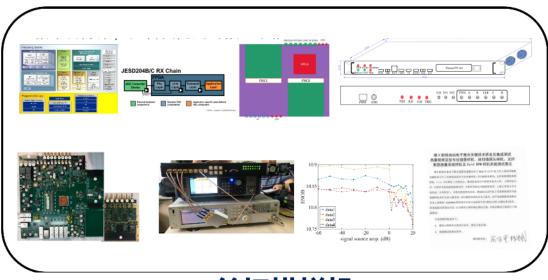
Superconducting undulator:

nice but not easy _____

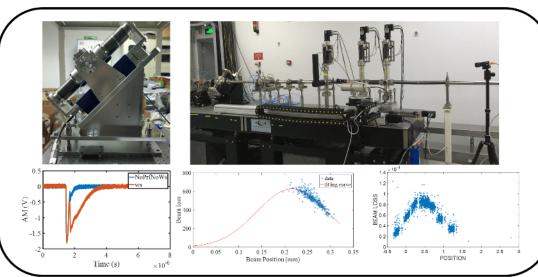
All components tested OK SCU cooldown is fine now SC coils need more work.



Goals: 4m long, period length is 16mm, Bmax = 1.583T



Courtesy: Q. ZHOU et al.


BI/control for high rep-rate beam:

Courtesy: Y. Leng, Y. Yan

CBPM样机

丝扫描样机

高重频束流信号处理器样机

SHINE cw beam test facility

SHINE cw beam test facility:

- ~50m long bunker in SHINE site
- CW DC-SRF gun + 2 cryomodules
- Can also serve as two HT units

DC-SRF gun from PKU Re-assembled by SHINE Gun performed OK.

BCP cryomodule hori. tested. Two-module welding completed Already commissioned with beam.

Control/BI/power supplies MHz drive laser Beam dump(15kW)

CW testbed commissioning since 2022

Others: more tests, IR chamber at far hall

The single cavity module for injector is to be tested with beam before installed at shaft late 2023.

SHINE

The Interaction Chamber was installed at shaft #5 (far exp. hall), May 2023.

Summary

- The challenges of SHINE project can not be overestimated. Despite of all kinds of difficulties the SHINE project has been advancing significantly in infrastructures on SRF/cryogenic, civil constructions, prototyping of (especially SRF) technologies.
- The R&D/prototyping for machine components are mostly completed. The 4m long SCU is still under development though there is backup warm solution. SHINE is now in the phase of series production of major parts of machine.
- The installations in underground tunnels/shafts started this April. Machine commissioning will begin from gun (2023) to linac (from 2024), then to FEL (from 2025 starting with first part of linac and FEL-II undulator line).

Thank you for your attention!

