67th ICFA Advanced Beam Dynamics Workshop on Future Light Sources (FLS 2023), Lucerne, Switzerland, from 27 August to 1 September 2023

Working Group C: Compact Light Sources

Conveners: Massimo Ferrario/ LNF, Masaki Kando/ QST, Yen-Chieh Huang/ NTHU

Prepared by Yen-Chieh Huang & Philippe Piot

https://www.indiatimes.com/auto/electric/toyota-ultra-compactbattery-electric-car-unveiled-378075.html

https://www.carousell.sg/p /swiss-made-chrono-

watch-1174083124/

~ centimeters

https://www.freepik.com/freephotos-vectors/virus-cartoon

~ nanometers

~ meters

Compact Light Sources based on

- Inverse Compton Scattering
- Laser plasma accelerator (LPA)
- Others Two-beam accelerator, dielectric laser accelerator, electron-driven nano-structures # of papers:~ 20

Inverse Compton Scattering

An efficient Optimisation of a Burst Mode-Operated Fabry-Perot Cavity for Compton Light Sources

<u>Vlad Muşat</u>, Andrea Latina, Eduardo Granados (CERN), Eric Cormier, Giorgio Santarelli (LP2N)

TU1C1

UNIVERSITY OF

ohn Adams Institute

Rick van den Berg - r.g.w.v.d.berg@tue.nl

MO4C3

, 130 MeV _____ 0.5 GeV

with 8 cavities

V 1.3 GHz klystron

vertical deflecting rf

rf gun laser

accelerating module

🔵 rf gun

Generation of GeV Photon Energy at European X-Ray Free Electron Laser

This study theorizes the possibility of generating quasi-monoenergetic gamma photons at energies of 2.8 GeV and 4.6 GeV with low energy resolutions (0.005) and 0.01 BW), and the potential to reach up to 6 GeV using Inverse Compton scattering with a 14 GeV (up-to 17 GeV) electrons at EuXFEL. Two possible laser systems for achieving high luminosity are being considered. Additionally, the specific pulse structure at EuXFEL and repetition rate have been taken into account. iniector injector linac booster linac main linac

2 GeV

GHz klystror

bending magne

Illya Drebot et al.

E_{las}=1.2 eV (1030 nm). PulseE=2.7 mJ

E_{las}=2.4 eV (515 nm). PulseE=0.2 J

 $\#_{phot}$ per sec =3.4*10⁷ (for 320 Hz)

Figure 1: Schematic layout of the European XFEL complex, the third harmonic system is at the injector stage.

12 rf stations 8 - 14 GeV

station with 4 x 8

illya.drebot@mi.infn.it

TU1C2

Inverse Compton Scattering X-ray Source of the ELSA Accelerator (CEA DAM, France) • **Abel PIRES (CEA DAM, LMCE)**

Typical bunch charge : 0.1 - 3 nCBunch duration : 15 - 100 ps1 - 10000 bunches per train (1 - 5 Hz)Emittance : $2 - 30 \mu \text{m}$

TU1C2 The Inverse Compton X-ray Source at ELSA 3D view of the interaction point and SMILE device SMILE : • Abel PIRES (CEA DAM, LMCE)

View of the laser impacting the mirrors surfaces

- On-going optimization for interaction area, laser, electrons
- Compton source experiments on ELSA : dec 2023 Feb 2024
- Studies under way for an upgrade, including new 1.3 GHz cavity/klystron/modulator.

O

Target's atomic number must be matched with the laser intensity for efficient acceleration

A bright Compton source formed by two DLA channels (PIC study)

1J / 30 fs laser:

~5 KeV photons

1023 photons/ s mm2 mrad2 1% BW

2024: Experimental realization at TAU

CXLS

Phase 1 Hard X-ray ICS Source

Built and now commissioning. First x-rays Feb 2, 2023

.abs

William Graves Biodesign Institute and CISA Arizona State University

🛃 🐪 Labs

Biodesign Institute **Arizona State University**

Parameter	0.1%	5%
	Bandwidth	Bandwidth
Photon energy range (keV)	2 - 20	2 - 20
Average flux (ph/s)	5×10 ⁹	1×10 ¹¹
Average brilliance*	2x10 ¹²	5×10 ¹²
Peak brilliance*	3x10 ¹⁹	9x10 ¹⁸
RMS source size (um)	3.0	3.0
RMS opening angle (mrad)	4.0	4.0
RMS vertical angle	4.0	4.0
Photons per pulse	5x10 ⁶	1×10 ⁸
RMS pulse length (fs)	<300	<300
RMS timing jitter	<100	<100
Repetition rate	1000	1000

*Brilliance units are photons/(s .1% mm²mrad²)

Phase 2 Soft X-ray Coherent Laser

5 year construction began March 2023 under \$90.8M NSF midscale RI-2 award

Design Performance

Photon energy (eV)	250	1000	2500
X-ray wavelength (nm)	4.9	1.2	0.49
Average flux at 1 kHz (ph/s)	8.0E+11	1.1E+11	4.4E+10
Average brilliance*	1.3E+15	1.2E+16	7.3E+16
Peak brilliance*	1.2E+28	5.6E+28	1.4E+29
RMS source size(um)	0.9	0.5	0.3
RMS source divergence (urad)	440	188	117
X-ray flux per shot – energy (nJ)	32	18	18
Photons per pulse	8.0E+08	1.1E+08	4.4E+07
Pulse length FWHM (fs)	9.1	4.6	1.9
Bandwidth FWHM (%)	0.18	0.09	0.08
RMS timing jitter (fs)	<10	<10	<10
Repetition rate	1000	1000	1000
Electron beam energy (MeV)	14	29	46

*Brilliance units are photons/(s .1% mm²mrad²)

Nano-bunch generation from the exchange of transverse and longitudinal emittances

• Laser-plasma accelerator

EuPRAXIA: The First FEL User Facility Driven by a Plasma Accelerator

R. Assmann, INFN Future Light Sources (FLS) Workshop Luzern, Switzerland, 28 Aug 2023

- EuPRAXIA is a design and an ESFRI project for a distributed European Research Infrastructure, building two plasma-driven FEL's in Europe.
- EuPRAXIA FEL site in Frascati LNF-INFN is sufficiently funded for **first FEL user operation in 2028**.
- Second EuPRAXIA FEL site will be selected in next 18 months, among 4 excellent candidate sites.
- Concept today works in design and in reality. Expect (solvable)
 problems in stability for 24/7 user operation. Facility needed
 to demonstrate!

EuPRAXIA Project Timeline

The COXINEL seeded Free Electron Laser driven by the Laser Plasma Accelerator at HZDR Collaboration SOLEIL/HZDR/LOA/PhLAM

Presented by Marie E. Couprie

SULEIL & HELMHOLTZ

TH2C1

100 TW–class arm of IR DRACO laser

188 MeV ± 6 MeV 213 ±13 pC RMS relative energy spread : 6.3 ± 0.8% FWHM charge density: 6.3 ± 1.3 pC/MeV H. divergence: 0.8 ± 0.2 mrad within 180-198 MeV FWHM duration : 14.8 ± 1.6 fs

M. Labat, J. Couperus, A. Ghaith, A. Irman et al., Nature Photonics, 1-7 (2022) M. E. Couprie, 67th Advanced Beam Dynamics Workshop on Future Light Sources, 27 Aug-1 September 2023 | Lucerne, Switzerland TH₂C₂

f(E) [N/MeV]

- Technologies are ready for the PHASEO-commissioning at ELI-Beamlines
- 'Water-window' incoherent undulator radiation will be generated for users after commissioning of the PHASE1, utilizing a novel high-repetition rate (up to 50 Hz) high-power L2-laser system

Development of Laser-Driven Plasma Accelerator Undulator Radiation Source at ELI-Beamlines

Alexander Yu. Molodozhentsev (Eli-Beamlines, Prague, Czech Republic)

LPA-based Incoherent Undulator Radiation Source

Undulator parameters Undulator period

Number of period

On-axis magnetic field

Total length

K-value

Photon beam parameters (PHASE#1) / Estimation

mm

mm

100

500

0.6

0.28

		We = 300 MeV / Qa=30pC	We = 600 MeV / Qb=30pC
Photon energy (1 st harmonic)	eV	165	658
Photon wavelength (1st harmonic)	nm	7.5	1.8
Number of photons (0.1%bw)		1.7×105	7.1×10 ⁶
Peak Brilliance (at peak current of electron bunch)	•	4.8×10 ²⁰	1.9×10 ²¹
Effective beam size	and dive	rgence of the photon beam	(1 st harmonic)
Σx,y	μm	114	114
Σx',γ'	mrad	0.087	0.043

* photon/sec/mrad²/mm²/0.1%bw

- High repetition rate (from 25 Hz up to 50 Hz), utilizing the L2-DUHA laser
- Stable and repeatable operation
- Improvement of the LPA-based electron beam quality
- Electron @ Photon beam diagnostics

L2-DUHA laser system (in collaboration with STFC/UK)

A.Molodozhentsev / 67th ICFA Advanced Beam Dynamics Workshop on Future Light Sources, Lucerne, 2023

TH2C3

A Novel X-ray Free-electron Laser Scheme Based on Cascaded Laser Wakefield Accelerators

Fei Li (TUB, Beijing)

 Others – Two-beam accelerator, XFEL pumped xray laser, dielectric laser accelerator, electrondriven nano-structures

TWO-BEAM ACCELERATION FOR COMPACT FELS

Philippe Piot, Argonne National Laboratory, Northern Illinois University

Stable operation at high field

nonstrated 400 MV/m surface field on photocathode X-band RF (XRF) gun

reloping a TBA concept for a V/EUV FEL driven by a 500-MeV TBA

150

Population Inversion X-ray Laser Oscillator at LCLS and LCLS-II

Alex Halavanau, on behalf of XLO collaboration

WE2C1

XLO cavity first prototype at LCLS-CXI end-station

- Based on inner-shell population inversion (can be accomplished with an XFEL pump, yes, still need an XFEL)
- Low intensity (several uJ)
- 10-50 fs long, transform limited
- No wavelength jitter due to laws of QM
- PoP: 8 keV Cu K alpha1

Y. C. Huang of NTHU & R. L. Byer of Stanford U.

Sub-GW ~ GW circulating power (Taiwan photon source)

0.5 kW ~ 5 W power (adapted from https://achip.stanford.edu/)

Average brilliance of Coherent Undulator Radiation driven by Dielectric Laser Accelerator is comparable to 3rd-generation light sources in the VUV/EUV/soft-x-ray spectrum (due to high bunch rate + nano-bunch superradiance)

*Curves other than DLA CUR are adapted from Zirong Huang, SLAC-PUB-15449.

Free-electron-light interactions in nanophotonics

Charles Roques-Carmes, Stanford University, chrc@stanford.edu

• Modelling, tailoring, and enhancing coherent electron-light

interactions with nanophotonic structures

"I have presented a general framework to model, tailor, and enhance coherent electron-light interactions with nanophotonic structures. ...

This also paves the way to some of the very exciting applications of the field of free-electron quantum optics."

See also:

Roques-Carmes et al., Applied Physics Reviews (2023) Yang, Massuda, **Roques-Carmes**, et al., *Nature Physics*

MO1L2

Thanks to the WG-C Members and FLS'23 Workshop attendees

THANK YOU FOR YOUR ATTENTION

