JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for WE4P15: Multichromatic Free-electron Laser Generation Through Frequency-beating in a Chirped Electron Beam

@inproceedings{qi:fls2023-we4p15,
  author       = {Z. Qi and C. Feng},
  title        = {{Multichromatic Free-electron Laser Generation Through Frequency-beating in a Chirped Electron Beam}},
% booktitle    = {Proc. FLS'23},
  booktitle    = {Proc. 67th ICFA Adv. Beam Dyn. Workshop Future Light Sources (FLS'23)},
  eventdate    = {2023-08-27/2023-09-01},
  pages        = {181--183},
  paper        = {WE4P15},
  language     = {english},
  keywords     = {electron, FEL, laser, bunching, radiation},
  venue        = {Luzern, Switzerland},
  series       = {ICFA Advanced Beam Dynamics Workshop},
  number       = {67},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {01},
  year         = {2024},
  issn         = {2673-7035},
  isbn         = {978-3-95450-224-0},
  doi          = {10.18429/JACoW-FLS2023-WE4P15},
  url          = {http://jacow.org/fls2023/papers/we4p15.pdf},
  abstract     = {{We propose a simple method to generate mode-locked multichromatic free-electron laser (FEL) through a longitudinal phase space frequency-beating in a chirped electron beam. Utilizing the two stage modulator-chicane setups in Shanghai Soft X-ray FEL facility, together with a chirped electron beam, we are going to imprint a frequency-beating effect into the electron beam. Hence periodic bunching trains can be formed and can be used to generate mode-locked FEL radiation pulses. Theoretical analysis and numerical simulations are given out to demonstrate the performance of the method. The results indicate that mode-locked FEL in temporal and frequency domain can be formed at the 18th harmonic of the seed laser, with the central wavelength being about 14.58nm and the peak power over 2GW.}},
}