JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for TU1C1: An Efficient Optimisation of a Burst Mode-Operated Fabry-Perot Cavity for Compton Light Sources

@inproceedings{mușat:fls2023-tu1c1,
  author       = {V. Mușat and E. Cormier and E. Granados and A. Latina and G. Santarelli},
  title        = {{An Efficient Optimisation of a Burst Mode-Operated Fabry-Perot Cavity for Compton Light Sources}},
% booktitle    = {Proc. FLS'23},
  booktitle    = {Proc. 67th ICFA Adv. Beam Dyn. Workshop Future Light Sources (FLS'23)},
  eventdate    = {2023-08-27/2023-09-01},
  pages        = {46--49},
  paper        = {TU1C1},
  language     = {english},
  keywords     = {laser, cavity, electron, photon, optics},
  venue        = {Luzern, Switzerland},
  series       = {ICFA Advanced Beam Dynamics Workshop},
  number       = {67},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {01},
  year         = {2024},
  issn         = {2673-7035},
  isbn         = {978-3-95450-224-0},
  doi          = {10.18429/JACoW-FLS2023-TU1C1},
  url          = {http://jacow.org/fls2023/papers/tu1c1.pdf},
  abstract     = {{The burst mode operation of a Fabry-Perot cavity (FPC) allows for the generation of a high-intensity photon beam in inverse Compton scattering (ICS) sources. The geometry and burst mode parameters of the FPC can be optimised to maximise the scattered photon flux. A novel optimisation method is presented, significantly improving processing speed and accuracy. The FPC’s dimensions, mirror requirements, and effective energy can be obtained from the electron beam parameters at the interaction point. A multi-objective optimization algorithm was used to derive the geometrical parameters of the FPC; this brought orders of magnitude increase in computation speed if compared to the nominal Monte Carlo-based approaches. The burst mode parameters of the FPC were obtained by maximizing the effective energy of the laser pulse in the FPC. The impact of optical losses and thermal lensing on the FPC parameters is addressed. Preliminary parameters of an ICS source implementing this novel optimisation are presented. The source could reach high-performance photon beams for high-energy applications.}},
}